blob: 0ddbf521186cfdea23be52c2fc67d7e0ba1bfb5b [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_cumsum.cc
* \brief CPU implementation of numpy-compatible cumsum operator
*/
#include "./np_cumsum-inl.h"
namespace mxnet {
namespace op {
inline bool CumsumShape(const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector *in_attrs,
mxnet::ShapeVector *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
const CumsumParam &param = nnvm::get<CumsumParam>(attrs.parsed);
if (param.axis.has_value()) {
return ElemwiseShape<1, 1>(attrs, in_attrs, out_attrs);
} else {
TShape out_shape(1, in_attrs->at(0).Size());
SHAPE_ASSIGN_CHECK(*out_attrs, 0, out_shape);
return shape_is_known(out_attrs->at(0));
}
}
inline bool CumsumType(const nnvm::NodeAttrs& attrs,
std::vector<int> *in_attrs,
std::vector<int> *out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
const CumsumParam &param = nnvm::get<CumsumParam>(attrs.parsed);
if (param.dtype.has_value()) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, param.dtype.value());
} else {
TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0));
}
return out_attrs->at(0) != -1 && in_attrs->at(0) != -1;
}
DMLC_REGISTER_PARAMETER(CumsumParam);
NNVM_REGISTER_OP(_np_cumsum)
.add_alias("cumsum")
.describe(R"code(Return the cumulative sum of the elements along a given axis.)code" ADD_FILELINE)
.set_attr_parser(ParamParser<CumsumParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"a"};
})
.set_attr<mxnet::FInferShape>("FInferShape", CumsumShape)
.set_attr<nnvm::FInferType>("FInferType", CumsumType)
.set_attr<FCompute>("FCompute<cpu>", CumsumForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_np_cumsum"})
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
})
.add_argument("a", "NDArray-or-Symbol", "Input ndarray")
.add_arguments(CumsumParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_np_cumsum)
.set_attr_parser(ParamParser<CumsumParam>)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FCompute>("FCompute<cpu>", CumsumBackward<cpu>);
} // namespace op
} // namespace mxnet