| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| from pathlib import Path |
| from functools import partial |
| |
| import details |
| from neural_compressor.experimental import Quantization, common |
| |
| # constants |
| INC_CONFIG_PATH = Path('./bert.yaml').resolve() |
| PARAMS_PATH = Path('./bert_mrpc.params').resolve() |
| OUTPUT_DIR_PATH = Path('./output/').resolve() |
| OUTPUT_MODEL_PATH = OUTPUT_DIR_PATH/'quantized_model' |
| OUTPUT_DIR_PATH.mkdir(parents=True, exist_ok=True) |
| |
| # Prepare the dataloaders (calib_dataloader is same as train_dataloader but without shuffling) |
| train_dataloader, dev_dataloader, calib_dataloader = details.preprocess_data() |
| |
| # Get the model |
| model = details.BERTModel(details.BACKBONE, dropout=0.1, num_classes=details.NUM_CLASSES) |
| model.hybridize(static_alloc=True) |
| |
| # finetune or load the parameters of already finetuned model |
| if not PARAMS_PATH.exists(): |
| model = details.finetune(model, train_dataloader, dev_dataloader, OUTPUT_DIR_PATH) |
| model.save_parameters(str(PARAMS_PATH)) |
| else: |
| model.load_parameters(str(PARAMS_PATH), ctx=details.CTX, cast_dtype=True) |
| |
| # run INC |
| calib_dataloader.batch_size = details.BATCH_SIZE |
| eval_func = partial(details.evaluate, dataloader=dev_dataloader) |
| |
| quantizer = Quantization(str(INC_CONFIG_PATH)) # 1. Config file |
| quantizer.model = common.Model(model) # 2. Model to be quantized |
| quantizer.calib_dataloader = calib_dataloader # 3. Calibration dataloader |
| quantizer.eval_func = eval_func # 4. Evaluation function |
| quantized_model = quantizer.fit().model |
| |
| # save the quantized model |
| quantized_model.export(str(OUTPUT_MODEL_PATH)) |