blob: 8e8b0197960a993e63da030d4029723927fecc47 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
""" example train fit utility """
import logging
import os
import time
import re
import math
import mxnet as mx
def get_epoch_size(args, kv):
return math.ceil(int(args.num_examples / kv.num_workers) / args.batch_size)
def _get_lr_scheduler(args, kv):
if 'lr_factor' not in args or args.lr_factor >= 1:
return (args.lr, None)
epoch_size = get_epoch_size(args, kv)
begin_epoch = args.load_epoch if args.load_epoch else 0
if 'pow' in args.lr_step_epochs:
lr = args.lr
max_up = args.num_epochs * epoch_size
pwr = float(re.sub('pow[- ]*', '', args.lr_step_epochs))
poly_sched = mx.lr_scheduler.PolyScheduler(max_up, lr, pwr)
return (lr, poly_sched)
step_epochs = [int(l) for l in args.lr_step_epochs.split(',')]
lr = args.lr
for s in step_epochs:
if begin_epoch >= s:
lr *= args.lr_factor
if lr != args.lr:
logging.info('Adjust learning rate to %e for epoch %d',
lr, begin_epoch)
steps = [epoch_size * (x - begin_epoch)
for x in step_epochs if x - begin_epoch > 0]
if steps:
return (lr, mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_factor,
base_lr=args.lr))
else:
return (lr, None)
def _load_model(args, rank=0):
if 'load_epoch' not in args or args.load_epoch is None:
return (None, None, None)
assert args.model_prefix is not None
model_prefix = args.model_prefix
if rank > 0 and os.path.exists("%s-%d-symbol.json" % (model_prefix, rank)):
model_prefix += "-%d" % (rank)
sym, arg_params, aux_params = mx.model.load_checkpoint(
model_prefix, args.load_epoch)
logging.info('Loaded model %s_%04d.params', model_prefix, args.load_epoch)
return (sym, arg_params, aux_params)
def _save_model(args, rank=0):
if args.model_prefix is None:
return None
return mx.callback.do_checkpoint(args.model_prefix if rank == 0 else "%s-%d" % (
args.model_prefix, rank), period=args.save_period)
def add_fit_args(parser):
"""
parser : argparse.ArgumentParser
return a parser added with args required by fit
"""
train = parser.add_argument_group('Training', 'model training')
train.add_argument('--network', type=str,
help='the neural network to use')
train.add_argument('--num-layers', type=int,
help='number of layers in the neural network, \
required by some networks such as resnet')
train.add_argument('--gpus', type=str,
help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu')
train.add_argument('--kv-store', type=str, default='device',
help='key-value store type')
train.add_argument('--num-epochs', type=int, default=100,
help='max num of epochs')
train.add_argument('--lr', type=float, default=0.1,
help='initial learning rate')
train.add_argument('--lr-factor', type=float, default=0.1,
help='the ratio to reduce lr on each step')
train.add_argument('--lr-step-epochs', type=str,
help='the epochs to reduce the lr, e.g. 30,60')
train.add_argument('--initializer', type=str, default='default',
help='the initializer type')
train.add_argument('--optimizer', type=str, default='sgd',
help='the optimizer type')
train.add_argument('--mom', type=float, default=0.9,
help='momentum for sgd')
train.add_argument('--wd', type=float, default=0.0001,
help='weight decay for sgd')
train.add_argument('--batch-size', type=int, default=128,
help='the batch size')
train.add_argument('--disp-batches', type=int, default=20,
help='show progress for every n batches')
train.add_argument('--model-prefix', type=str,
help='model prefix')
train.add_argument('--save-period', type=int, default=1, help='params saving period')
parser.add_argument('--monitor', dest='monitor', type=int, default=0,
help='log network parameters every N iters if larger than 0')
train.add_argument('--load-epoch', type=int,
help='load the model on an epoch using the model-load-prefix')
train.add_argument('--top-k', type=int, default=0,
help='report the top-k accuracy. 0 means no report.')
train.add_argument('--loss', type=str, default='',
help='show the cross-entropy or nll loss. ce strands for cross-entropy, nll-loss stands for likelihood loss')
train.add_argument('--test-io', type=int, default=0,
help='1 means test reading speed without training')
train.add_argument('--dtype', type=str, default='float32',
help='precision: float32 or float16')
train.add_argument('--gc-type', type=str, default='none',
help='type of gradient compression to use, \
takes `2bit` or `none` for now')
train.add_argument('--gc-threshold', type=float, default=0.5,
help='threshold for 2bit gradient compression')
# additional parameters for large batch sgd
train.add_argument('--macrobatch-size', type=int, default=0,
help='distributed effective batch size')
train.add_argument('--warmup-epochs', type=int, default=5,
help='the epochs to ramp-up lr to scaled large-batch value')
train.add_argument('--warmup-strategy', type=str, default='linear',
help='the ramping-up strategy for large batch sgd')
train.add_argument('--profile-worker-suffix', type=str, default='',
help='profile workers actions into this file. During distributed training\
filename saved will be rank1_ followed by this suffix')
train.add_argument('--profile-server-suffix', type=str, default='',
help='profile server actions into a file with name like rank1_ followed by this suffix \
during distributed training')
train.add_argument('--use-imagenet-data-augmentation', type=int, default=0,
help='enable data augmentation of ImageNet data, default disabled')
return train
def fit(args, network, data_loader, **kwargs):
"""
train a model
args : argparse returns
network : the symbol definition of the nerual network
data_loader : function that returns the train and val data iterators
"""
# kvstore
kv = mx.kvstore.create(args.kv_store)
if args.gc_type != 'none':
kv.set_gradient_compression({'type': args.gc_type,
'threshold': args.gc_threshold})
if args.profile_server_suffix:
mx.profiler.set_config(filename=args.profile_server_suffix, profile_all=True, profile_process='server')
mx.profiler.set_state(state='run', profile_process='server')
if args.profile_worker_suffix:
if kv.num_workers > 1:
filename = 'rank' + str(kv.rank) + '_' + args.profile_worker_suffix
else:
filename = args.profile_worker_suffix
mx.profiler.set_config(filename=filename, profile_all=True, profile_process='worker')
mx.profiler.set_state(state='run', profile_process='worker')
# logging
head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
logging.info('start with arguments %s', args)
epoch_size = get_epoch_size(args, kv)
# data iterators
(train, val) = data_loader(args, kv)
if 'dist' in args.kv_store and not 'async' in args.kv_store:
logging.info('Resizing training data to %d batches per machine', epoch_size)
# resize train iter to ensure each machine has same number of batches per epoch
# if not, dist_sync can hang at the end with one machine waiting for other machines
train = mx.io.ResizeIter(train, epoch_size)
if args.test_io:
tic = time.time()
for i, batch in enumerate(train):
if isinstance(batch, list):
for b in batch:
for j in b.data:
j.wait_to_read()
else:
for j in batch.data:
j.wait_to_read()
if (i + 1) % args.disp_batches == 0:
logging.info('Batch [%d]\tSpeed: %.2f samples/sec', i,
args.disp_batches * args.batch_size / (time.time() - tic))
tic = time.time()
return
# load model
if 'arg_params' in kwargs and 'aux_params' in kwargs:
arg_params = kwargs['arg_params']
aux_params = kwargs['aux_params']
else:
sym, arg_params, aux_params = _load_model(args, kv.rank)
if sym is not None:
assert sym.tojson() == network.tojson()
# save model
checkpoint = _save_model(args, kv.rank)
# devices for training
devs = mx.cpu() if args.gpus is None or args.gpus == "" else [
mx.gpu(int(i)) for i in args.gpus.split(',')]
# learning rate
lr, lr_scheduler = _get_lr_scheduler(args, kv)
# create model
model = mx.mod.Module(
context=devs,
symbol=network
)
lr_scheduler = lr_scheduler
optimizer_params = {
'learning_rate': lr,
'wd': args.wd,
'lr_scheduler': lr_scheduler,
'multi_precision': True}
# Only a limited number of optimizers have 'momentum' property
has_momentum = {'sgd', 'dcasgd', 'nag', 'signum', 'lbsgd'}
if args.optimizer in has_momentum:
optimizer_params['momentum'] = args.mom
monitor = mx.mon.Monitor(
args.monitor, pattern=".*") if args.monitor > 0 else None
# A limited number of optimizers have a warmup period
has_warmup = {'lbsgd', 'lbnag'}
if args.optimizer in has_warmup:
nworkers = kv.num_workers
if epoch_size < 1:
epoch_size = 1
macrobatch_size = args.macrobatch_size
if macrobatch_size < args.batch_size * nworkers:
macrobatch_size = args.batch_size * nworkers
#batch_scale = round(float(macrobatch_size) / args.batch_size / nworkers +0.4999)
batch_scale = math.ceil(
float(macrobatch_size) / args.batch_size / nworkers)
optimizer_params['updates_per_epoch'] = epoch_size
optimizer_params['begin_epoch'] = args.load_epoch if args.load_epoch else 0
optimizer_params['batch_scale'] = batch_scale
optimizer_params['warmup_strategy'] = args.warmup_strategy
optimizer_params['warmup_epochs'] = args.warmup_epochs
optimizer_params['num_epochs'] = args.num_epochs
if args.initializer == 'default':
if args.network == 'alexnet':
# AlexNet will not converge using Xavier
initializer = mx.init.Normal()
# VGG will not trend to converge using Xavier-Gaussian
elif args.network and 'vgg' in args.network:
initializer = mx.init.Xavier()
else:
initializer = mx.init.Xavier(
rnd_type='gaussian', factor_type="in", magnitude=2)
# initializer = mx.init.Xavier(factor_type="in", magnitude=2.34),
elif args.initializer == 'xavier':
initializer = mx.init.Xavier()
elif args.initializer == 'msra':
initializer = mx.init.MSRAPrelu()
elif args.initializer == 'orthogonal':
initializer = mx.init.Orthogonal()
elif args.initializer == 'normal':
initializer = mx.init.Normal()
elif args.initializer == 'uniform':
initializer = mx.init.Uniform()
elif args.initializer == 'one':
initializer = mx.init.One()
elif args.initializer == 'zero':
initializer = mx.init.Zero()
# evaluation metrices
eval_metrics = ['accuracy']
if args.top_k > 0:
eval_metrics.append(mx.metric.create(
'top_k_accuracy', top_k=args.top_k))
supported_loss = ['ce', 'nll_loss']
if len(args.loss) > 0:
# ce or nll loss is only applicable to softmax output
loss_type_list = args.loss.split(',')
if 'softmax_output' in network.list_outputs():
for loss_type in loss_type_list:
loss_type = loss_type.strip()
if loss_type == 'nll':
loss_type = 'nll_loss'
if loss_type not in supported_loss:
logging.warning(loss_type + ' is not an valid loss type, only cross-entropy or ' \
'negative likelihood loss is supported!')
else:
eval_metrics.append(mx.metric.create(loss_type))
else:
logging.warning("The output is not softmax_output, loss argument will be skipped!")
# callbacks that run after each batch
batch_end_callbacks = [mx.callback.Speedometer(
args.batch_size, args.disp_batches)]
if 'batch_end_callback' in kwargs:
cbs = kwargs['batch_end_callback']
batch_end_callbacks += cbs if isinstance(cbs, list) else [cbs]
# run
model.fit(train,
begin_epoch=args.load_epoch if args.load_epoch else 0,
num_epoch=args.num_epochs,
eval_data=val,
eval_metric=eval_metrics,
kvstore=kv,
optimizer=args.optimizer,
optimizer_params=optimizer_params,
initializer=initializer,
arg_params=arg_params,
aux_params=aux_params,
batch_end_callback=batch_end_callbacks,
epoch_end_callback=checkpoint,
allow_missing=True,
monitor=monitor)
if args.profile_server_suffix:
mx.profiler.set_state(state='run', profile_process='server')
if args.profile_worker_suffix:
mx.profiler.set_state(state='run', profile_process='worker')