| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| */ |
| #include <map> |
| #include <string> |
| #include <fstream> |
| #include <vector> |
| #include "utils.h" |
| #include "mxnet-cpp/MxNetCpp.h" |
| |
| using namespace mxnet::cpp; |
| |
| Symbol ConvFactoryBN(Symbol data, int num_filter, |
| Shape kernel, Shape stride, Shape pad, |
| const std::string & name, |
| const std::string & suffix = "") { |
| Symbol conv_w("conv_" + name + suffix + "_w"), conv_b("conv_" + name + suffix + "_b"); |
| |
| Symbol conv = Convolution("conv_" + name + suffix, data, |
| conv_w, conv_b, kernel, |
| num_filter, stride, Shape(1, 1), pad); |
| std::string name_suffix = name + suffix; |
| Symbol gamma(name_suffix + "_gamma"); |
| Symbol beta(name_suffix + "_beta"); |
| Symbol mmean(name_suffix + "_mmean"); |
| Symbol mvar(name_suffix + "_mvar"); |
| Symbol bn = BatchNorm("bn_" + name + suffix, conv, gamma, beta, mmean, mvar); |
| return Activation("relu_" + name + suffix, bn, "relu"); |
| } |
| |
| Symbol InceptionFactoryA(Symbol data, int num_1x1, int num_3x3red, |
| int num_3x3, int num_d3x3red, int num_d3x3, |
| PoolingPoolType pool, int proj, |
| const std::string & name) { |
| Symbol c1x1 = ConvFactoryBN(data, num_1x1, Shape(1, 1), Shape(1, 1), |
| Shape(0, 0), name + "1x1"); |
| Symbol c3x3r = ConvFactoryBN(data, num_3x3red, Shape(1, 1), Shape(1, 1), |
| Shape(0, 0), name + "_3x3r"); |
| Symbol c3x3 = ConvFactoryBN(c3x3r, num_3x3, Shape(3, 3), Shape(1, 1), |
| Shape(1, 1), name + "_3x3"); |
| Symbol cd3x3r = ConvFactoryBN(data, num_d3x3red, Shape(1, 1), Shape(1, 1), |
| Shape(0, 0), name + "_double_3x3", "_reduce"); |
| Symbol cd3x3 = ConvFactoryBN(cd3x3r, num_d3x3, Shape(3, 3), Shape(1, 1), |
| Shape(1, 1), name + "_double_3x3_0"); |
| cd3x3 = ConvFactoryBN(data = cd3x3, num_d3x3, Shape(3, 3), Shape(1, 1), |
| Shape(1, 1), name + "_double_3x3_1"); |
| Symbol pooling = Pooling(name + "_pool", data, |
| Shape(3, 3), pool, false, false, |
| PoolingPoolingConvention::kValid, |
| Shape(1, 1), Shape(1, 1)); |
| Symbol cproj = ConvFactoryBN(pooling, proj, Shape(1, 1), Shape(1, 1), |
| Shape(0, 0), name + "_proj"); |
| std::vector<Symbol> lst; |
| lst.push_back(c1x1); |
| lst.push_back(c3x3); |
| lst.push_back(cd3x3); |
| lst.push_back(cproj); |
| return Concat("ch_concat_" + name + "_chconcat", lst, lst.size()); |
| } |
| |
| Symbol InceptionFactoryB(Symbol data, int num_3x3red, int num_3x3, |
| int num_d3x3red, int num_d3x3, const std::string & name) { |
| Symbol c3x3r = ConvFactoryBN(data, num_3x3red, Shape(1, 1), |
| Shape(1, 1), Shape(0, 0), |
| name + "_3x3", "_reduce"); |
| Symbol c3x3 = ConvFactoryBN(c3x3r, num_3x3, Shape(3, 3), Shape(2, 2), |
| Shape(1, 1), name + "_3x3"); |
| Symbol cd3x3r = ConvFactoryBN(data, num_d3x3red, Shape(1, 1), Shape(1, 1), |
| Shape(0, 0), name + "_double_3x3", "_reduce"); |
| Symbol cd3x3 = ConvFactoryBN(cd3x3r, num_d3x3, Shape(3, 3), Shape(1, 1), |
| Shape(1, 1), name + "_double_3x3_0"); |
| cd3x3 = ConvFactoryBN(cd3x3, num_d3x3, Shape(3, 3), Shape(2, 2), |
| Shape(1, 1), name + "_double_3x3_1"); |
| Symbol pooling = Pooling("max_pool_" + name + "_pool", data, |
| Shape(3, 3), PoolingPoolType::kMax, |
| false, false, PoolingPoolingConvention::kValid, |
| Shape(2, 2), Shape(1, 1)); |
| std::vector<Symbol> lst; |
| lst.push_back(c3x3); |
| lst.push_back(cd3x3); |
| lst.push_back(pooling); |
| return Concat("ch_concat_" + name + "_chconcat", lst, lst.size()); |
| } |
| |
| Symbol InceptionSymbol(int num_classes) { |
| // data and label |
| Symbol data = Symbol::Variable("data"); |
| Symbol data_label = Symbol::Variable("data_label"); |
| |
| // stage 1 |
| Symbol conv1 = ConvFactoryBN(data, 64, Shape(7, 7), Shape(2, 2), Shape(3, 3), "conv1"); |
| Symbol pool1 = Pooling("pool1", conv1, Shape(3, 3), PoolingPoolType::kMax, |
| false, false, PoolingPoolingConvention::kValid, Shape(2, 2)); |
| |
| // stage 2 |
| Symbol conv2red = ConvFactoryBN(pool1, 64, Shape(1, 1), Shape(1, 1), Shape(0, 0), "conv2red"); |
| Symbol conv2 = ConvFactoryBN(conv2red, 192, Shape(3, 3), Shape(1, 1), Shape(1, 1), "conv2"); |
| Symbol pool2 = Pooling("pool2", conv2, Shape(3, 3), PoolingPoolType::kMax, |
| false, false, PoolingPoolingConvention::kValid, Shape(2, 2)); |
| |
| // stage 3 |
| Symbol in3a = InceptionFactoryA(pool2, 64, 64, 64, 64, 96, PoolingPoolType::kAvg, 32, "3a"); |
| Symbol in3b = InceptionFactoryA(in3a, 64, 64, 96, 64, 96, PoolingPoolType::kAvg, 64, "3b"); |
| Symbol in3c = InceptionFactoryB(in3b, 128, 160, 64, 96, "3c"); |
| |
| // stage 4 |
| Symbol in4a = InceptionFactoryA(in3c, 224, 64, 96, 96, 128, PoolingPoolType::kAvg, 128, "4a"); |
| Symbol in4b = InceptionFactoryA(in4a, 192, 96, 128, 96, 128, PoolingPoolType::kAvg, 128, "4b"); |
| Symbol in4c = InceptionFactoryA(in4b, 160, 128, 160, 128, 160, PoolingPoolType::kAvg, 128, "4c"); |
| Symbol in4d = InceptionFactoryA(in4c, 96, 128, 192, 160, 192, PoolingPoolType::kAvg, 128, "4d"); |
| Symbol in4e = InceptionFactoryB(in4d, 128, 192, 192, 256, "4e"); |
| |
| // stage 5 |
| Symbol in5a = InceptionFactoryA(in4e, 352, 192, 320, 160, 224, PoolingPoolType::kAvg, 128, "5a"); |
| Symbol in5b = InceptionFactoryA(in5a, 352, 192, 320, 192, 224, PoolingPoolType::kMax, 128, "5b"); |
| |
| // average pooling |
| Symbol avg = Pooling("global_pool", in5b, Shape(7, 7), PoolingPoolType::kAvg); |
| |
| // classifier |
| Symbol flatten = Flatten("flatten", avg); |
| Symbol conv1_w("conv1_w"), conv1_b("conv1_b"); |
| Symbol fc1 = FullyConnected("fc1", flatten, conv1_w, conv1_b, num_classes); |
| return SoftmaxOutput("softmax", fc1, data_label); |
| } |
| |
| NDArray ResizeInput(NDArray data, const Shape new_shape) { |
| NDArray pic = data.Reshape(Shape(0, 1, 28, 28)); |
| NDArray pic_1channel; |
| Operator("_contrib_BilinearResize2D") |
| .SetParam("height", new_shape[2]) |
| .SetParam("width", new_shape[3]) |
| (pic).Invoke(pic_1channel); |
| NDArray output; |
| Operator("tile") |
| .SetParam("reps", Shape(1, 3, 1, 1)) |
| (pic_1channel).Invoke(output); |
| return output; |
| } |
| |
| int main(int argc, char const *argv[]) { |
| int batch_size = 40; |
| int max_epoch = argc > 1 ? strtol(argv[1], nullptr, 10) : 100; |
| float learning_rate = 1e-2; |
| float weight_decay = 1e-4; |
| |
| /*context*/ |
| auto ctx = Context::cpu(); |
| int num_gpu; |
| MXGetGPUCount(&num_gpu); |
| #if !MXNET_USE_CPU |
| if (num_gpu > 0) { |
| ctx = Context::gpu(); |
| } |
| #endif |
| |
| TRY |
| auto inception_bn_net = InceptionSymbol(10); |
| std::map<std::string, NDArray> args_map; |
| std::map<std::string, NDArray> aux_map; |
| |
| const Shape data_shape = Shape(batch_size, 3, 224, 224), |
| label_shape = Shape(batch_size); |
| args_map["data"] = NDArray(data_shape, ctx); |
| args_map["data_label"] = NDArray(label_shape, ctx); |
| inception_bn_net.InferArgsMap(ctx, &args_map, args_map); |
| |
| std::vector<std::string> data_files = { "./data/mnist_data/train-images-idx3-ubyte", |
| "./data/mnist_data/train-labels-idx1-ubyte", |
| "./data/mnist_data/t10k-images-idx3-ubyte", |
| "./data/mnist_data/t10k-labels-idx1-ubyte" |
| }; |
| |
| auto train_iter = MXDataIter("MNISTIter"); |
| if (!setDataIter(&train_iter, "Train", data_files, batch_size)) { |
| return 1; |
| } |
| |
| auto val_iter = MXDataIter("MNISTIter"); |
| if (!setDataIter(&val_iter, "Label", data_files, batch_size)) { |
| return 1; |
| } |
| |
| // initialize parameters |
| Xavier xavier = Xavier(Xavier::gaussian, Xavier::in, 2); |
| for (auto &arg : args_map) { |
| xavier(arg.first, &arg.second); |
| } |
| |
| Optimizer* opt = OptimizerRegistry::Find("sgd"); |
| opt->SetParam("momentum", 0.9) |
| ->SetParam("rescale_grad", 1.0 / batch_size) |
| ->SetParam("clip_gradient", 10) |
| ->SetParam("lr", learning_rate) |
| ->SetParam("wd", weight_decay); |
| |
| auto *exec = inception_bn_net.SimpleBind(ctx, args_map); |
| auto arg_names = inception_bn_net.ListArguments(); |
| |
| // Create metrics |
| Accuracy train_acc, val_acc; |
| for (int iter = 0; iter < max_epoch; ++iter) { |
| LG << "Epoch: " << iter; |
| train_iter.Reset(); |
| train_acc.Reset(); |
| while (train_iter.Next()) { |
| auto data_batch = train_iter.GetDataBatch(); |
| ResizeInput(data_batch.data, data_shape).CopyTo(&args_map["data"]); |
| data_batch.label.CopyTo(&args_map["data_label"]); |
| NDArray::WaitAll(); |
| |
| exec->Forward(true); |
| exec->Backward(); |
| // Update parameters |
| for (size_t i = 0; i < arg_names.size(); ++i) { |
| if (arg_names[i] == "data" || arg_names[i] == "data_label") continue; |
| opt->Update(i, exec->arg_arrays[i], exec->grad_arrays[i]); |
| } |
| |
| NDArray::WaitAll(); |
| train_acc.Update(data_batch.label, exec->outputs[0]); |
| } |
| |
| val_iter.Reset(); |
| val_acc.Reset(); |
| while (val_iter.Next()) { |
| auto data_batch = val_iter.GetDataBatch(); |
| ResizeInput(data_batch.data, data_shape).CopyTo(&args_map["data"]); |
| data_batch.label.CopyTo(&args_map["data_label"]); |
| NDArray::WaitAll(); |
| exec->Forward(false); |
| NDArray::WaitAll(); |
| val_acc.Update(data_batch.label, exec->outputs[0]); |
| } |
| LG << "Train Accuracy: " << train_acc.Get(); |
| LG << "Validation Accuracy: " << val_acc.Get(); |
| } |
| delete exec; |
| delete opt; |
| MXNotifyShutdown(); |
| CATCH |
| return 0; |
| } |