| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * Copyright (c) 2017 by Contributors |
| * \file grid_generator-inl.h |
| * \brief |
| * The operator generate sampling grid |
| * \author Xu Dong |
| */ |
| #ifndef MXNET_OPERATOR_GRID_GENERATOR_INL_H_ |
| #define MXNET_OPERATOR_GRID_GENERATOR_INL_H_ |
| |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mxnet/operator.h> |
| #include <vector> |
| #include <map> |
| #include <utility> |
| #include <string> |
| #include "./mshadow_op.h" |
| #include "./operator_common.h" |
| #include "./linalg.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| namespace grid { |
| enum GridGeneratorOpInputs {kData}; |
| enum GridGeneratorOpOutputs {kOut, kGridDst}; |
| enum GridGeneratorOpResource {kTempSpace}; |
| enum GridGeneratorTransformType {kAffine, kWarp}; |
| } |
| |
| struct GridGeneratorParam : public dmlc::Parameter<GridGeneratorParam> { |
| int transform_type; |
| mxnet::TShape target_shape; |
| DMLC_DECLARE_PARAMETER(GridGeneratorParam) { |
| int shape[] = {0, 0}; |
| DMLC_DECLARE_FIELD(transform_type) |
| .add_enum("affine", grid::kAffine) |
| .add_enum("warp", grid::kWarp) |
| .describe("The type of transformation. For `affine`, input data should be an affine matrix " |
| "of size (batch, 6). For `warp`, input data should be an optical flow of size " |
| "(batch, 2, h, w)."); |
| DMLC_DECLARE_FIELD(target_shape).set_default(mxnet::TShape(shape, shape + 2)) |
| .describe("Specifies the output shape (H, W). This is required if transformation type is " |
| "`affine`. If transformation type is `warp`, this parameter is ignored."); |
| } |
| }; |
| |
| template<typename xpu, typename DType> |
| class GridGeneratorOp : public Operator { |
| public: |
| explicit GridGeneratorOp(GridGeneratorParam p) { |
| this->param_ = p; |
| } |
| |
| virtual void Forward(const OpContext &ctx, |
| const std::vector<TBlob> &in_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &out_data, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| CHECK_EQ(req[grid::kOut], kWriteTo); |
| CHECK_EQ(in_data.size(), 1U); |
| CHECK_EQ(out_data.size(), 2U); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| switch (param_.transform_type) { |
| case grid::kAffine: { |
| // if transform_type is affine, data is affine matrix, input shape : (batch, 2, 3) |
| Tensor<xpu, 2, DType> out = out_data[grid::kOut]. |
| get_with_shape<xpu, 2, DType>(Shape2(out_data[grid::kOut].shape_[0] * 2, |
| out_data[grid::kOut].shape_[2] * out_data[grid::kOut].shape_[3]), s); |
| Tensor<xpu, 2, DType> grid_dst = out_data[grid::kGridDst].get<xpu, 2, DType>(s); |
| Shape<2> data_shape = Shape2(out_data[grid::kOut].shape_[0] * 2, 3); |
| Tensor<xpu, 2, DType> data = in_data[grid::kData] |
| .get_with_shape<xpu, 2, DType>(data_shape, s); |
| // x, y, 1 |
| grid_dst[0] = range<DType>(0, grid_dst.shape_[1]); |
| grid_dst[0] = grid_dst[0] - tcast<DType>(tcast<int>(grid_dst[0] / |
| scalar<DType>(param_.target_shape[1]))) * scalar<DType>(param_.target_shape[1]); |
| grid_dst[0] = scalar<DType>(-1.0) + grid_dst[0] * |
| scalar<DType>(2.0 / (param_.target_shape[1] - 1)); |
| grid_dst[1] = range<DType>(0, grid_dst.shape_[1]); |
| grid_dst[1] = scalar<DType>(-1.0) + tcast<DType>(tcast<int>(grid_dst[1] / |
| scalar<DType>(param_.target_shape[1]))) * scalar<DType>(2.0/(param_.target_shape[0] - 1)); |
| grid_dst[2] = scalar<DType>(1.0); |
| // Legacy approach shown here for comparison: |
| // Assign(out, req[grid::kOut], dot(data, grid_dst)); |
| linalg_gemm(data, grid_dst, out, false, false, s, req[grid::kOut]); |
| break; |
| } |
| // Warping transformation |
| case grid::kWarp: { |
| // if transform_type is warp, data is optical flow, input shape : (batch, 2, height, width) |
| // grid_src = grid_dst + optical flow |
| Tensor<xpu, 4, DType> data = in_data[grid::kData].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> out = out_data[grid::kOut].get<xpu, 4, DType>(s); |
| // grid_dst : (2, H, W) |
| Tensor<xpu, 3, DType> grid_dst = out_data[grid::kGridDst].get<xpu, 3, DType>(s); |
| Tensor<xpu, 2, DType> workspace = ctx.requested[grid::kTempSpace] |
| .get_space_typed<xpu, 2, DType>(Shape2(2, 1), s); |
| grid_dst[0] = repmat(range<DType>(0, data.size(3)), data.size(2)); |
| grid_dst[1] = reshape(range<DType>(0, data.size(2), 1, data.size(3)), |
| Shape2(data.size(2), data.size(3))); |
| workspace[0] = scalar<DType>((DType(data.size(3)) - 1.0) / 2.0); |
| workspace[1] = scalar<DType>((DType(data.size(2)) - 1.0) / 2.0); |
| Assign(out, req[grid::kOut], |
| (data + broadcast_with_axis(grid_dst, -1, data.shape_[0])) / |
| broadcast_to(reshape(workspace, Shape4(1, 2, 1, 1)), |
| mxnet::TShape(data.shape_)) - scalar<DType>(1)); |
| break; |
| } |
| } |
| } |
| |
| virtual void Backward(const OpContext &ctx, |
| const std::vector<TBlob> &out_grad, |
| const std::vector<TBlob> &in_data, |
| const std::vector<TBlob> &out_data, |
| const std::vector<OpReqType> &req, |
| const std::vector<TBlob> &in_grad, |
| const std::vector<TBlob> &aux_args) { |
| using namespace mshadow; |
| using namespace mshadow::expr; |
| CHECK_EQ(in_data.size(), 1U); |
| CHECK_EQ(out_data.size(), 2U); |
| Stream<xpu> *s = ctx.get_stream<xpu>(); |
| switch (param_.transform_type) { |
| case grid::kAffine: { |
| Tensor<xpu, 2, DType> grid_dst = out_data[grid::kGridDst].get<xpu, 2, DType>(s); |
| Shape<2> data_shape = Shape2(in_grad[grid::kData].shape_[0] * 2, 3); |
| Tensor<xpu, 2, DType> gdata = in_grad[grid::kData] |
| .get_with_shape<xpu, 2, DType>(data_shape, s); |
| Shape<2> grad_shape = Shape2(out_grad[grid::kOut].shape_[0] * 2, |
| param_.target_shape[0] * param_.target_shape[1]); |
| Tensor<xpu, 2, DType> grad = out_grad[grid::kOut] |
| .get_with_shape<xpu, 2, DType>(grad_shape, s); |
| // Legacy approach shown here for comparison: |
| // Assign(gdata, req[grid::kData], dot(grad, grid_dst.T())); |
| // grad : (batch * 2, H * W) grid_dst.T : (H * W, 3) |
| linalg_gemm(grad, grid_dst, gdata, false, true, s, req[grid::kData]); |
| break; |
| } |
| case grid::kWarp: { |
| Tensor<xpu, 4, DType> grad = out_grad[grid::kOut].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> gdata = in_grad[grid::kData].get<xpu, 4, DType>(s); |
| Tensor<xpu, 2, DType> workspace = ctx.requested[grid::kTempSpace] |
| .get_space_typed<xpu, 2, DType>(Shape2(2, 1), s); |
| workspace[0] = scalar<DType>((DType(gdata.size(3)) - 1.0) / 2.0); |
| workspace[1] = scalar<DType>((DType(gdata.size(2)) - 1.0) / 2.0); |
| Assign(gdata, req[grid::kData], |
| grad / broadcast_to(reshape(workspace, Shape4(1, 2, 1, 1)), |
| mxnet::TShape(gdata.shape_))); |
| break; |
| } |
| } |
| } |
| |
| private: |
| GridGeneratorParam param_; |
| }; // class GridGeneratorOp |
| |
| template<typename xpu> |
| Operator* CreateOp(GridGeneratorParam param, int dtype); |
| |
| #if DMLC_USE_CXX11 |
| class GridGeneratorProp : public OperatorProperty { |
| public: |
| int NumVisibleOutputs() const override { |
| return 1; |
| } |
| |
| int NumOutputs() const override { |
| return 2; |
| } |
| |
| std::vector<std::string> ListArguments() const override { |
| return {"data"}; |
| } |
| |
| std::vector<std::string> ListOutputs() const override { |
| return {"output", "grid_dst"}; |
| } |
| |
| void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override { |
| param_.Init(kwargs); |
| } |
| |
| std::map<std::string, std::string> GetParams() const override { |
| return param_.__DICT__(); |
| } |
| |
| bool InferShape(mxnet::ShapeVector *in_shape, |
| mxnet::ShapeVector *out_shape, |
| mxnet::ShapeVector *aux_shape) const override { |
| using namespace mshadow; |
| CHECK_EQ(in_shape->size(), 1U) << "Input:[data]"; |
| const mxnet::TShape &lshape = (*in_shape)[grid::kData]; |
| if (lshape.ndim() == 0) return false; |
| out_shape->clear(); |
| switch (param_.transform_type) { |
| case grid::kAffine: { |
| CHECK_EQ(lshape.ndim(), 2U) \ |
| << "if transform_type is affine, data is affine matrix" |
| "affine matrix should be 2D in batch-num_hidden"; |
| CHECK_EQ(lshape[1], 6U) << "incorrect data shape[1], should be 6"; |
| CHECK_GT(param_.target_shape[0], 0U) \ |
| << "incorrect target_shape: " << param_.target_shape[0]; |
| CHECK_GT(param_.target_shape[1], 0U) \ |
| << "incorrect target_shape: " << param_.target_shape[1]; |
| out_shape->push_back(Shape4(lshape[0], 2, param_.target_shape[0], param_.target_shape[1])); |
| out_shape->push_back(Shape2(3, param_.target_shape[0] * param_.target_shape[1])); |
| break; |
| } |
| case grid::kWarp: { |
| CHECK_EQ(lshape.ndim(), 4U) \ |
| << "if transform_type is warp, data is optical flow" |
| "optical flow should be 4D in batch-num_hidden-y-x"; |
| CHECK_EQ(lshape[1], 2U) << "incorrect data shape[1], should be 2"; |
| out_shape->push_back(lshape); |
| out_shape->push_back(Shape3(2, lshape[2], lshape[3])); |
| break; |
| } |
| } |
| return true; |
| } |
| |
| bool InferType(std::vector<int> *in_type, |
| std::vector<int> *out_type, |
| std::vector<int> *aux_type) const override { |
| int dtype = -1; |
| for (int type : *in_type) { |
| if (dtype == -1) { |
| dtype = type; |
| } else { |
| CHECK(type == dtype || |
| type == -1) << |
| "Non-uniform data type in GridGenerator"; |
| } |
| } |
| if (dtype == -1) { |
| LOG(FATAL) << "Not enough information to infer type in GridGenerator."; |
| return false; |
| } |
| size_t nin = this->ListArguments().size(); |
| in_type->clear(); |
| for (size_t i = 0; i < nin; ++i) in_type->push_back(dtype); |
| size_t naux = this->ListAuxiliaryStates().size(); |
| aux_type->clear(); |
| for (size_t i = 0; i < naux; ++i) aux_type->push_back(dtype); |
| size_t nout = this->ListOutputs().size(); |
| out_type->clear(); |
| for (size_t i = 0; i < nout; ++i) out_type->push_back(dtype); |
| return true; |
| } |
| |
| OperatorProperty* Copy() const override { |
| auto ptr = new GridGeneratorProp(); |
| ptr->param_ = param_; |
| return ptr; |
| } |
| |
| std::string TypeString() const override { |
| return "GridGenerator"; |
| } |
| |
| std::vector<int> DeclareBackwardDependency( |
| const std::vector<int> &out_grad, |
| const std::vector<int> &in_data, |
| const std::vector<int> &out_data) const override { |
| switch (param_.transform_type) { |
| case grid::kAffine: { |
| return {out_grad[grid::kOut], |
| out_data[grid::kGridDst]}; |
| } |
| case grid::kWarp: { |
| return {out_grad[grid::kOut]}; |
| } |
| } |
| return {}; |
| } |
| |
| std::vector<ResourceRequest> ForwardResource( |
| const mxnet::ShapeVector &in_shape) const override { |
| switch (param_.transform_type) { |
| case grid::kAffine: { |
| return{}; |
| } |
| case grid::kWarp: { |
| return{ ResourceRequest::kTempSpace }; |
| } |
| } |
| return{}; |
| } |
| |
| std::vector<ResourceRequest> BackwardResource( |
| const mxnet::ShapeVector &in_shape) const override { |
| switch (param_.transform_type) { |
| case grid::kAffine: { |
| return {}; |
| } |
| case grid::kWarp: { |
| return {ResourceRequest::kTempSpace}; |
| } |
| } |
| return {}; |
| } |
| |
| Operator* CreateOperator(Context ctx) const override { |
| LOG(FATAL) << "Not Implemented."; |
| return nullptr; |
| } |
| |
| Operator* CreateOperatorEx(Context ctx, mxnet::ShapeVector *in_shape, |
| std::vector<int> *in_type) const override; |
| |
| private: |
| GridGeneratorParam param_; |
| }; // class GridGeneratorProp |
| #endif // DMLC_USE_CXX11 |
| } // namespace op |
| } // namespace mxnet |
| #endif // MXNET_OPERATOR_GRID_GENERATOR_INL_H_ |