| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| import argparse |
| import ast |
| import pprint |
| |
| import mxnet as mx |
| from mxnet.module import Module |
| |
| from symdata.bbox import im_detect |
| from symdata.loader import load_test, generate_batch |
| from symdata.vis import vis_detection |
| from symnet.model import load_param, check_shape |
| |
| |
| def demo_net(sym, class_names, args): |
| # print config |
| print('called with args\n{}'.format(pprint.pformat(vars(args)))) |
| |
| # setup context |
| if args.gpu: |
| ctx = mx.gpu(int(args.gpu)) |
| else: |
| ctx = mx.cpu(0) |
| |
| # load single test |
| im_tensor, im_info, im_orig = load_test(args.image, short=args.img_short_side, max_size=args.img_long_side, |
| mean=args.img_pixel_means, std=args.img_pixel_stds) |
| |
| # generate data batch |
| data_batch = generate_batch(im_tensor, im_info) |
| |
| # load params |
| arg_params, aux_params = load_param(args.params, ctx=ctx) |
| |
| # produce shape max possible |
| data_names = ['data', 'im_info'] |
| label_names = None |
| data_shapes = [('data', (1, 3, args.img_long_side, args.img_long_side)), ('im_info', (1, 3))] |
| label_shapes = None |
| |
| # check shapes |
| check_shape(sym, data_shapes, arg_params, aux_params) |
| |
| # create and bind module |
| mod = Module(sym, data_names, label_names, context=ctx) |
| mod.bind(data_shapes, label_shapes, for_training=False) |
| mod.init_params(arg_params=arg_params, aux_params=aux_params) |
| |
| # forward |
| mod.forward(data_batch) |
| rois, scores, bbox_deltas = mod.get_outputs() |
| rois = rois[:, 1:] |
| scores = scores[0] |
| bbox_deltas = bbox_deltas[0] |
| im_info = im_info[0] |
| |
| # decode detection |
| det = im_detect(rois, scores, bbox_deltas, im_info, |
| bbox_stds=args.rcnn_bbox_stds, nms_thresh=args.rcnn_nms_thresh, |
| conf_thresh=args.rcnn_conf_thresh) |
| |
| # print out |
| for [cls, conf, x1, y1, x2, y2] in det: |
| if cls > 0 and conf > args.vis_thresh: |
| print(class_names[int(cls)], conf, [x1, y1, x2, y2]) |
| |
| # if vis |
| if args.vis: |
| vis_detection(im_orig, det, class_names, thresh=args.vis_thresh) |
| |
| |
| def parse_args(): |
| parser = argparse.ArgumentParser(description='Demonstrate a Faster R-CNN network', |
| formatter_class=argparse.ArgumentDefaultsHelpFormatter) |
| parser.add_argument('--network', type=str, default='vgg16', help='base network') |
| parser.add_argument('--params', type=str, default='', help='path to trained model') |
| parser.add_argument('--dataset', type=str, default='voc', help='training dataset') |
| parser.add_argument('--image', type=str, default='', help='path to test image') |
| parser.add_argument('--gpu', type=str, default='', help='GPU devices, eg."0,1,2,3" , not set to use CPU.') |
| parser.add_argument('--vis', action='store_true', help='display results') |
| parser.add_argument('--vis-thresh', type=float, default=0.7, help='threshold display boxes') |
| # faster rcnn params |
| parser.add_argument('--img-short-side', type=int, default=600) |
| parser.add_argument('--img-long-side', type=int, default=1000) |
| parser.add_argument('--img-pixel-means', type=str, default='(0.0, 0.0, 0.0)') |
| parser.add_argument('--img-pixel-stds', type=str, default='(1.0, 1.0, 1.0)') |
| parser.add_argument('--rpn-feat-stride', type=int, default=16) |
| parser.add_argument('--rpn-anchor-scales', type=str, default='(8, 16, 32)') |
| parser.add_argument('--rpn-anchor-ratios', type=str, default='(0.5, 1, 2)') |
| parser.add_argument('--rpn-pre-nms-topk', type=int, default=6000) |
| parser.add_argument('--rpn-post-nms-topk', type=int, default=300) |
| parser.add_argument('--rpn-nms-thresh', type=float, default=0.7) |
| parser.add_argument('--rpn-min-size', type=int, default=16) |
| parser.add_argument('--rcnn-num-classes', type=int, default=21) |
| parser.add_argument('--rcnn-feat-stride', type=int, default=16) |
| parser.add_argument('--rcnn-pooled-size', type=str, default='(14, 14)') |
| parser.add_argument('--rcnn-batch-size', type=int, default=1) |
| parser.add_argument('--rcnn-bbox-stds', type=str, default='(0.1, 0.1, 0.2, 0.2)') |
| parser.add_argument('--rcnn-nms-thresh', type=float, default=0.3) |
| parser.add_argument('--rcnn-conf-thresh', type=float, default=1e-3) |
| args = parser.parse_args() |
| args.img_pixel_means = ast.literal_eval(args.img_pixel_means) |
| args.img_pixel_stds = ast.literal_eval(args.img_pixel_stds) |
| args.rpn_anchor_scales = ast.literal_eval(args.rpn_anchor_scales) |
| args.rpn_anchor_ratios = ast.literal_eval(args.rpn_anchor_ratios) |
| args.rcnn_pooled_size = ast.literal_eval(args.rcnn_pooled_size) |
| args.rcnn_bbox_stds = ast.literal_eval(args.rcnn_bbox_stds) |
| return args |
| |
| |
| def get_voc_names(args): |
| from symimdb.pascal_voc import PascalVOC |
| args.rcnn_num_classes = len(PascalVOC.classes) |
| return PascalVOC.classes |
| |
| |
| def get_coco_names(args): |
| from symimdb.coco import coco |
| args.rcnn_num_classes = len(coco.classes) |
| return coco.classes |
| |
| |
| def get_vgg16_test(args): |
| from symnet.symbol_vgg import get_vgg_test |
| if not args.params: |
| args.params = 'model/vgg16-0010.params' |
| args.img_pixel_means = (123.68, 116.779, 103.939) |
| args.img_pixel_stds = (1.0, 1.0, 1.0) |
| args.net_fixed_params = ['conv1', 'conv2'] |
| args.rpn_feat_stride = 16 |
| args.rcnn_feat_stride = 16 |
| args.rcnn_pooled_size = (7, 7) |
| return get_vgg_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, |
| rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, |
| rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, |
| rpn_min_size=args.rpn_min_size, |
| num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, |
| rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size) |
| |
| |
| def get_resnet50_test(args): |
| from symnet.symbol_resnet import get_resnet_test |
| if not args.params: |
| args.params = 'model/resnet50-0010.params' |
| args.img_pixel_means = (0.0, 0.0, 0.0) |
| args.img_pixel_stds = (1.0, 1.0, 1.0) |
| args.rpn_feat_stride = 16 |
| args.rcnn_feat_stride = 16 |
| args.rcnn_pooled_size = (14, 14) |
| return get_resnet_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, |
| rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, |
| rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, |
| rpn_min_size=args.rpn_min_size, |
| num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, |
| rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size, |
| units=(3, 4, 6, 3), filter_list=(256, 512, 1024, 2048)) |
| |
| |
| def get_resnet101_test(args): |
| from symnet.symbol_resnet import get_resnet_test |
| if not args.params: |
| args.params = 'model/resnet101-0010.params' |
| args.img_pixel_means = (0.0, 0.0, 0.0) |
| args.img_pixel_stds = (1.0, 1.0, 1.0) |
| args.rpn_feat_stride = 16 |
| args.rcnn_feat_stride = 16 |
| args.rcnn_pooled_size = (14, 14) |
| return get_resnet_test(anchor_scales=args.rpn_anchor_scales, anchor_ratios=args.rpn_anchor_ratios, |
| rpn_feature_stride=args.rpn_feat_stride, rpn_pre_topk=args.rpn_pre_nms_topk, |
| rpn_post_topk=args.rpn_post_nms_topk, rpn_nms_thresh=args.rpn_nms_thresh, |
| rpn_min_size=args.rpn_min_size, |
| num_classes=args.rcnn_num_classes, rcnn_feature_stride=args.rcnn_feat_stride, |
| rcnn_pooled_size=args.rcnn_pooled_size, rcnn_batch_size=args.rcnn_batch_size, |
| units=(3, 4, 23, 3), filter_list=(256, 512, 1024, 2048)) |
| |
| def get_class_names(dataset, args): |
| datasets = { |
| 'voc': get_voc_names, |
| 'coco': get_coco_names |
| } |
| if dataset not in datasets: |
| raise ValueError("dataset {} not supported".format(dataset)) |
| return datasets[dataset](args) |
| |
| |
| def get_network(network, args): |
| networks = { |
| 'vgg16': get_vgg16_test, |
| 'resnet50': get_resnet50_test, |
| 'resnet101': get_resnet101_test |
| } |
| if network not in networks: |
| raise ValueError("network {} not supported".format(network)) |
| return networks[network](args) |
| |
| |
| def main(): |
| args = parse_args() |
| class_names = get_class_names(args.dataset, args) |
| sym = get_network(args.network, args) |
| demo_net(sym, class_names, args) |
| |
| |
| if __name__ == '__main__': |
| main() |