blob: a148748f0bf3e57227875dde435f08bf0875bd69 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: skip-file
from __future__ import absolute_import
from __future__ import division
from distutils.version import StrictVersion
import sys
import platform
import itertools
import numpy as _np
import unittest
import pytest
from mxnet import np, util
from mxnet.test_utils import assert_almost_equal
from mxnet.test_utils import use_np
from mxnet.test_utils import is_op_runnable
from common import assertRaises, random_seed
from mxnet.numpy_dispatch_protocol import with_array_function_protocol, with_array_ufunc_protocol
from mxnet.numpy_dispatch_protocol import _NUMPY_ARRAY_FUNCTION_LIST, _NUMPY_ARRAY_UFUNC_LIST
_INT_DTYPES = [np.int8, np.int32, np.int64, np.uint8]
_FLOAT_DTYPES = [np.float16, np.float32, np.float64]
_DTYPES = _INT_DTYPES + _FLOAT_DTYPES
_TVM_OPS = [
'equal',
'not_equal',
'less',
'less_equal',
'greater',
'greater_equal',
'logical_and',
'logical_or',
'logical_xor',
]
class OpArgMngr(object):
"""Operator argument manager for storing operator workloads."""
_args = {}
@staticmethod
def add_workload(name, *args, **kwargs):
if name not in OpArgMngr._args:
OpArgMngr._args[name] = []
OpArgMngr._args[name].append({'args': args, 'kwargs': kwargs})
@staticmethod
def get_workloads(name):
if OpArgMngr._args == {}:
_prepare_workloads()
return OpArgMngr._args.get(name, None)
@staticmethod
def randomize_workloads():
# Force a new _prepare_workloads(), which will be based on new random numbers
OpArgMngr._args = {}
def _add_workload_all():
# check bad element in all positions
for i in range(256-7):
e = np.array([True] * 256, dtype=bool)[7::]
e[i] = False
OpArgMngr.add_workload('all', e)
# big array test for blocked libc loops
for i in list(range(9, 6000, 507)) + [7764, 90021, -10]:
e = np.array([True] * 100043, dtype=bool)
e[i] = False
OpArgMngr.add_workload('all', e)
def _add_workload_any():
# check bad element in all positions
for i in range(256-7):
d = np.array([False] * 256, dtype=bool)[7::]
d[i] = True
OpArgMngr.add_workload('any', d)
# big array test for blocked libc loops
for i in list(range(9, 6000, 507)) + [7764, 90021, -10]:
d = np.array([False] * 100043, dtype=bool)
d[i] = True
OpArgMngr.add_workload('any', d)
def _add_workload_sometrue():
# check bad element in all positions
for i in range(256-7):
d = np.array([False] * 256, dtype=bool)[7::]
d[i] = True
OpArgMngr.add_workload('sometrue', d)
# big array test for blocked libc loops
for i in list(range(9, 6000, 507)) + [7764, 90021, -10]:
d = np.array([False] * 100043, dtype=bool)
d[i] = True
OpArgMngr.add_workload('sometrue', d)
def _add_workload_unravel_index():
OpArgMngr.add_workload('unravel_index', indices=np.array([2],dtype=_np.int64), shape=(2, 2))
OpArgMngr.add_workload('unravel_index', np.array([(2*3 + 1)*6 + 4], dtype=_np.int64), (4, 3, 6))
OpArgMngr.add_workload('unravel_index', np.array([22, 41, 37], dtype=_np.int32), (7, 6))
OpArgMngr.add_workload('unravel_index', np.array([1621],dtype=_np.uint8), (6, 7, 8, 9))
OpArgMngr.add_workload('unravel_index', np.array([],dtype=_np.int64), (10, 3, 5))
OpArgMngr.add_workload('unravel_index', np.array([3], dtype=_np.int32), (2,2))
def _add_workload_diag_indices_from():
a = np.random.uniform(-4, 4, size=(4,4))
OpArgMngr.add_workload('diag_indices_from', a)
def _add_workload_bincount():
y = np.arange(4).astype(int)
y1 = np.array([1, 5, 2, 4, 1], dtype=_np.int64)
y2 = np.array((), dtype=_np.int8)
w = np.array([0.2, 0.3, 0.5, 0.1])
w1 = np.array([0.2, 0.3, 0.5, 0.1, 0.2])
OpArgMngr.add_workload('bincount', y)
OpArgMngr.add_workload('bincount', y1)
OpArgMngr.add_workload('bincount', y, w)
OpArgMngr.add_workload('bincount', y1, w1)
OpArgMngr.add_workload('bincount', y1, w1, 8)
OpArgMngr.add_workload('bincount', y, minlength=3)
OpArgMngr.add_workload('bincount', y, minlength=8)
OpArgMngr.add_workload('bincount', y2, minlength=0)
OpArgMngr.add_workload('bincount', y2, minlength=5)
def _add_workload_cross():
shapes = [
# (a_shape, b_shape, (a_axis, b_axis, c_axis))
((2,), (2,), (-1, -1, -1)),
((1, 2), (1, 2), (-1, -1, -1)),
((2, 5, 4, 3), (5, 2, 4, 3), (0, 1, 2)),
((2, 5, 1, 3), (1, 2, 4, 3), (0, 1, 2)),
((2,), (3,), (-1, -1, -1)),
((1, 2,), (1, 3,), (-1, -1, -1)),
((6, 2, 5, 4), (6, 5, 3, 4), (1, 2, 0)),
((6, 2, 1, 4), (1, 5, 3, 4), (1, 2, 0)),
((3,), (2,), (-1, -1, -1)),
((1, 3,), (1, 2,), (-1, -1, -1)),
((6, 3, 5, 4), (6, 5, 2, 4), (1, 2, 0)),
((6, 3, 1, 4), (1, 5, 2, 4), (1, 2, 0)),
((3,), (3,), (-1, -1, -1)),
((1, 3,), (1, 3,), (-1, -1, -1)),
((6, 3, 5, 4), (6, 5, 3, 4), (1, 2, 0)),
((6, 3, 1, 4), (1, 5, 3, 4), (1, 2, 0)),
]
dtypes = [np.float32, np.float64]
for shape, dtype in itertools.product(shapes, dtypes):
a_shape, b_shape, (a_axis, b_axis, c_axis) = shape
a_np = _np.random.uniform(-10., 10., size=a_shape)
b_np = _np.random.uniform(-10., 10., size=b_shape)
a = np.array(a_np, dtype=dtype)
b = np.array(b_np, dtype=dtype)
OpArgMngr.add_workload('cross', a, b, axisa=a_axis, axisb=b_axis, axisc=c_axis)
def _add_workload_diag():
def get_mat(n):
data = _np.arange(n)
data = _np.add.outer(data, data)
return data
A = np.array([[1, 2], [3, 4], [5, 6]])
vals = (100 * np.arange(5)).astype('l')
vals_c = (100 * np.array(get_mat(5)) + 1).astype('l')
vals_f = _np.array((100 * get_mat(5) + 1), order='F', dtype='l')
vals_f = np.array(vals_f)
OpArgMngr.add_workload('diag', A, k=2)
OpArgMngr.add_workload('diag', A, k=1)
OpArgMngr.add_workload('diag', A, k=0)
OpArgMngr.add_workload('diag', A, k=-1)
OpArgMngr.add_workload('diag', A, k=-2)
OpArgMngr.add_workload('diag', A, k=-3)
OpArgMngr.add_workload('diag', vals, k=0)
OpArgMngr.add_workload('diag', vals, k=2)
OpArgMngr.add_workload('diag', vals, k=-2)
OpArgMngr.add_workload('diag', vals_c, k=0)
OpArgMngr.add_workload('diag', vals_c, k=2)
OpArgMngr.add_workload('diag', vals_c, k=-2)
OpArgMngr.add_workload('diag', vals_f, k=0)
OpArgMngr.add_workload('diag', vals_f, k=2)
OpArgMngr.add_workload('diag', vals_f, k=-2)
def _add_workload_diagonal():
A = np.arange(12).reshape((3, 4))
B = np.arange(8).reshape((2,2,2))
OpArgMngr.add_workload('diagonal', A)
OpArgMngr.add_workload('diagonal', A, offset=0)
OpArgMngr.add_workload('diagonal', A, offset=-1)
OpArgMngr.add_workload('diagonal', A, offset=1)
OpArgMngr.add_workload('diagonal', B, offset=0)
OpArgMngr.add_workload('diagonal', B, offset=1)
OpArgMngr.add_workload('diagonal', B, offset=-1)
OpArgMngr.add_workload('diagonal', B, 0, 1, 2)
OpArgMngr.add_workload('diagonal', B, 0, 0, 1)
OpArgMngr.add_workload('diagonal', B, offset=1, axis1=0, axis2=2)
OpArgMngr.add_workload('diagonal', B, 0, 2, 1)
def _add_workload_median(array_pool):
OpArgMngr.add_workload('median', array_pool['4x1'])
OpArgMngr.add_workload('median', array_pool['4x1'], axis=0, keepdims=True)
OpArgMngr.add_workload('median', np.array([[1, 2, 3], [4, 5, 6]]))
OpArgMngr.add_workload('median', np.array([[1, 2, 3], [4, 5, 6]]), axis=0)
OpArgMngr.add_workload('median', np.array([[1, 2, 3], [4, 5, 6]]), axis=1)
def _add_workload_quantile():
x1 = np.arange(8) * 0.5
x2 = np.arange(100.)
q1 = np.array(0)
q2 = np.array(1)
q3 = np.array(0.5)
q4 = np.array([0, 0.75, 0.25, 0.5, 1.0])
q5 = 0.4
OpArgMngr.add_workload('quantile', x1, q1)
OpArgMngr.add_workload('quantile', x1, q2)
OpArgMngr.add_workload('quantile', x1, q3)
OpArgMngr.add_workload('quantile', x2, q4, interpolation="midpoint")
OpArgMngr.add_workload('quantile', x2, q4, interpolation="nearest")
OpArgMngr.add_workload('quantile', x2, q4, interpolation="lower")
OpArgMngr.add_workload('quantile', x2, q5, interpolation="midpoint")
OpArgMngr.add_workload('quantile', x2, q5, interpolation="nearest")
OpArgMngr.add_workload('quantile', x2, q5, interpolation="lower")
def _add_workload_percentile():
x1 = np.ones(5)
q1 = np.array(5)
x2 = np.array([[1, 1, 1],
[1, 1, 1],
[4, 4, 3],
[1, 1, 1],
[1, 1, 1]])
q2 = np.array(60)
x3 = np.arange(10)
q3 = np.array([25, 50, 100])
q4 = 65
x4 = np.arange(11 * 2).reshape(11, 1, 2, 1)
x5 = np.array([0, _np.nan])
OpArgMngr.add_workload('percentile', x1, q1, None, None, None)
OpArgMngr.add_workload('percentile', x1, q1, None, None, None, 'linear')
OpArgMngr.add_workload('percentile', x2, q2, axis=0)
OpArgMngr.add_workload('percentile', x3, q2, interpolation='linear')
OpArgMngr.add_workload('percentile', x3, q2, interpolation='lower')
OpArgMngr.add_workload('percentile', x3, q2, interpolation='higher')
OpArgMngr.add_workload('percentile', x3, q2, interpolation='midpoint')
OpArgMngr.add_workload('percentile', x3, q2, interpolation='nearest')
OpArgMngr.add_workload('percentile', x3, q3)
OpArgMngr.add_workload('percentile', x4, q2, axis=0)
OpArgMngr.add_workload('percentile', x4, q2, axis=1)
OpArgMngr.add_workload('percentile', x4, q4, axis=2)
OpArgMngr.add_workload('percentile', x4, q4, axis=3)
OpArgMngr.add_workload('percentile', x4, q2, axis=-1)
OpArgMngr.add_workload('percentile', x4, q2, axis=-2)
OpArgMngr.add_workload('percentile', x4, q4, axis=-3)
OpArgMngr.add_workload('percentile', x4, q4, axis=-4)
OpArgMngr.add_workload('percentile', x4, q2, axis=(1,2))
OpArgMngr.add_workload('percentile', x4, q3, axis=(-2,-1))
OpArgMngr.add_workload('percentile', x4, q2, axis=(1,2), keepdims=True)
OpArgMngr.add_workload('percentile', x5, q2)
OpArgMngr.add_workload('percentile', x5, q3)
def _add_workload_concatenate(array_pool):
OpArgMngr.add_workload('concatenate', [array_pool['4x1'], array_pool['4x1']])
OpArgMngr.add_workload('concatenate', [array_pool['4x1'], array_pool['4x1']], axis=1)
OpArgMngr.add_workload('concatenate', [np.random.uniform(size=(3, 3))])
OpArgMngr.add_workload('concatenate', (np.arange(4).reshape((2, 2)), np.arange(4).reshape((2, 2))))
OpArgMngr.add_workload('concatenate', (np.arange(4),))
OpArgMngr.add_workload('concatenate', (np.array(np.arange(4)),))
OpArgMngr.add_workload('concatenate', (np.arange(4), np.arange(3)))
OpArgMngr.add_workload('concatenate', (np.array(np.arange(4)), np.arange(3)))
OpArgMngr.add_workload('concatenate', (np.arange(4), np.arange(3)), axis=0)
OpArgMngr.add_workload('concatenate', (np.arange(4), np.arange(3)), axis=-1)
a23 = np.random.uniform(size=(2, 3))
a13 = np.random.uniform(size=(1, 3))
OpArgMngr.add_workload('concatenate', (a23, a13))
OpArgMngr.add_workload('concatenate', (a23, a13), axis=0)
OpArgMngr.add_workload('concatenate', (a23.T, a13.T), axis=1)
OpArgMngr.add_workload('concatenate', (a23.T, a13.T), axis=-1)
res = np.arange(2*3*7).reshape((2, 3, 7))
a0 = res[..., :4]
a1 = res[..., 4:6]
a2 = res[..., 6:]
OpArgMngr.add_workload('concatenate', (a0, a1, a2), axis=2)
OpArgMngr.add_workload('concatenate', (a0, a1, a2), axis=-1)
OpArgMngr.add_workload('concatenate', (a0.T, a1.T, a2.T), axis=0)
out = np.empty(4, dtype=np.float32)
OpArgMngr.add_workload('concatenate', (np.array([1, 2]), np.array([3, 4])), out=out)
OpArgMngr.add_workload('concatenate', [array_pool['4x1'], array_pool['4x1']], axis=None)
OpArgMngr.add_workload('concatenate', (np.arange(4).reshape((2, 2)), np.arange(4).reshape((2, 2))), axis=None)
OpArgMngr.add_workload('concatenate', (a23, a13), axis=None)
def _add_workload_append():
def get_new_shape(shape, axis):
shape_lst = list(shape)
if axis is not None:
shape_lst[axis] = _np.random.randint(0, 3)
return tuple(shape_lst)
for shape in [(0, 0), (2, 3), (2, 1, 3)]:
for axis in [0, 1, None]:
a = np.random.uniform(-1.0, 1.0, size=get_new_shape(shape, axis))
b = np.random.uniform(-1.0, 1.0, size=get_new_shape(shape, axis))
OpArgMngr.add_workload('append', a, b, axis=axis)
OpArgMngr.add_workload('append', np.array([]), np.array([]))
def _add_workload_copy():
OpArgMngr.add_workload('copy', np.random.uniform(size=(4, 1)))
OpArgMngr.add_workload('copy', np.random.uniform(size=(2, 2)))
OpArgMngr.add_workload('copy', np.random.uniform(size=(2,2)))
def _add_workload_expand_dims():
OpArgMngr.add_workload('expand_dims', np.random.uniform(size=(4, 1)), -1)
OpArgMngr.add_workload('expand_dims', np.random.uniform(size=(4, 1)) > 0.5, -1)
for axis in range(-5, 4):
OpArgMngr.add_workload('expand_dims', np.empty((2, 3, 4, 5)), axis)
def _add_workload_split():
OpArgMngr.add_workload('split', np.random.uniform(size=(4, 1)), 2)
OpArgMngr.add_workload('split', np.arange(10), 2)
OpArgMngr.add_workload('split', np.random.uniform(size=(10, 10, 3)), 3, -1)
assertRaises(ValueError, np.split, np.arange(10), 3)
def _add_workload_array_split():
a = np.arange(10)
b = np.array([np.arange(10), np.arange(10)])
for i in range(1, 12):
OpArgMngr.add_workload('array_split', a, i)
OpArgMngr.add_workload('array_split', b, 3, axis=0)
OpArgMngr.add_workload('array_split', b, [0, 1, 2], axis=0)
OpArgMngr.add_workload('array_split', b, 3, axis=-1)
OpArgMngr.add_workload('array_split', b, 3)
def _add_workload_hsplit():
a = np.array([1, 2, 3, 4])
OpArgMngr.add_workload('hsplit', a, 2)
b = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
OpArgMngr.add_workload('hsplit', b, 2)
def _add_workload_vsplit():
assertRaises(ValueError, np.vsplit, np.array([1, 2, 3, 4]), 2)
a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]])
OpArgMngr.add_workload('vsplit', a, 2)
assertRaises(ValueError, np.vsplit, np.array(1), 2)
def _add_workload_dsplit():
a = np.array([[[1, 2, 3, 4], [1, 2, 3, 4]],
[[1, 2, 3, 4], [1, 2, 3, 4]]])
OpArgMngr.add_workload('dsplit', a, 2)
assertRaises(ValueError, np.dsplit, np.array(1), 2)
assertRaises(ValueError, np.dsplit, np.array([1, 2, 3, 4]), 2)
assertRaises(ValueError, np.dsplit, np.array([[1, 2, 3, 4], [1, 2, 3, 4]]), 2)
def _add_workload_squeeze():
OpArgMngr.add_workload('squeeze', np.random.uniform(size=(4, 1)))
OpArgMngr.add_workload('squeeze', np.random.uniform(size=(20, 10, 10, 1, 1)))
OpArgMngr.add_workload('squeeze', np.random.uniform(size=(20, 1, 10, 1, 20)))
OpArgMngr.add_workload('squeeze', np.random.uniform(size=(1, 1, 20, 10)))
OpArgMngr.add_workload('squeeze', np.array([[[1.5]]]))
def _add_workload_std():
OpArgMngr.add_workload('std', np.random.uniform(size=(4, 1)))
A = np.array([[1, 2, 3], [4, 5, 6]])
OpArgMngr.add_workload('std', A)
OpArgMngr.add_workload('std', A, 0)
OpArgMngr.add_workload('std', A, 1)
OpArgMngr.add_workload('std', np.array([1, -1, 1, -1]))
OpArgMngr.add_workload('std', np.array([1, -1, 1, -1]), ddof=1)
OpArgMngr.add_workload('std', np.array([1, -1, 1, -1]), ddof=2)
OpArgMngr.add_workload('std', np.arange(10), out=np.array(0.))
def _add_workload_swapaxes():
OpArgMngr.add_workload('swapaxes', np.random.uniform(size=(4, 1)), 0, 1)
OpArgMngr.add_workload('swapaxes', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 0, 2)
a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy()
b = a.copy()
# no AxisError defined in mxnet numpy
# assertRaises(np.AxisError, np.swapaxes, -5, 0)
for i in range(-4, 4):
for j in range(-4, 4):
for src in (a, b):
OpArgMngr.add_workload('swapaxes', src, i, j)
def _add_workload_tensordot():
OpArgMngr.add_workload('tensordot', np.random.uniform(size=(4, 1)), np.random.uniform(size=(4, 1)))
OpArgMngr.add_workload('tensordot', np.random.uniform(size=(3, 0)), np.random.uniform(size=(0, 4)), (1, 0))
OpArgMngr.add_workload('tensordot', np.array(1), np.array(1), ([], []))
def _add_workload_tile():
OpArgMngr.add_workload('tile', np.random.uniform(size=(4, 1)), 2)
a = np.array([0, 1, 2])
b = np.array([[1, 2], [3, 4]])
OpArgMngr.add_workload('tile', a, 2)
OpArgMngr.add_workload('tile', a, (2, 2))
OpArgMngr.add_workload('tile', a, (1, 2))
OpArgMngr.add_workload('tile', b, 2)
OpArgMngr.add_workload('tile', b, (2, 1))
OpArgMngr.add_workload('tile', b, (2, 2))
OpArgMngr.add_workload('tile', np.arange(5), 1)
OpArgMngr.add_workload('tile', np.array([[], []]), 2)
OpArgMngr.add_workload('tile', np.array([[[]]]), (3, 2, 5))
reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)]
shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)]
for s in shape:
b = np.random.randint(0, 10, size=s)
for _ in reps:
# RuntimeError to be tracked
# where s = (3, 4, 3), r = (2, 3, 2)
# OpArgMngr.add_workload('tile', b, r)
pass
def _add_workload_transpose():
OpArgMngr.add_workload('transpose', np.random.uniform(size=(4, 1)))
OpArgMngr.add_workload('transpose', np.array([[]]))
OpArgMngr.add_workload('transpose', np.array([[1, 2]]))
OpArgMngr.add_workload('transpose', np.array([[1, 2, 3], [4, 5, 6]]))
OpArgMngr.add_workload('transpose', np.array([[1, 2], [3, 4], [5, 6]]), (1, 0))
OpArgMngr.add_workload('transpose', np.array([[1, 2], [3, 4]]))
def _add_workload_linalg_norm():
OpArgMngr.add_workload('linalg.norm', np.random.uniform(size=(4, 1)))
for dt in ["float64", "float32"]:
OpArgMngr.add_workload('linalg.norm', np.array([], dtype=dt))
OpArgMngr.add_workload('linalg.norm', np.array([np.array([]), np.array([])], dtype=dt))
for v in ([1, 2, 3, 4], [-1, -2, -3, -4], [-1, 2, -3, 4]):
OpArgMngr.add_workload('linalg.norm', np.array(v, dtype=dt))
A = np.array([[1, 2, 3], [4, 5, 6]], dtype=dt)
[OpArgMngr.add_workload('linalg.norm', A[:, k]) for k in range(A.shape[1])]
OpArgMngr.add_workload('linalg.norm', A, axis=0)
[OpArgMngr.add_workload('linalg.norm', A[k, :]) for k in range(A.shape[0])]
OpArgMngr.add_workload('linalg.norm', A, axis=1)
B = np.arange(1, 25).reshape(2, 3, 4).astype(dt)
for axis in itertools.combinations(range(-B.ndim, B.ndim), 2):
row_axis, col_axis = axis
if row_axis < 0:
row_axis += B.ndim
if col_axis < 0:
col_axis += B.ndim
if row_axis == col_axis:
# improper assertion behavior
# assertRaises(ValueError, np.linalg.norm, B, axis=axis)
pass
else:
OpArgMngr.add_workload('linalg.norm', B, axis=axis)
k_index = B.ndim - row_axis - col_axis
for k in range(B.shape[k_index]):
if row_axis < col_axis:
OpArgMngr.add_workload('linalg.norm', np.take(B[:], np.array(k), axis=k_index))
else:
OpArgMngr.add_workload('linalg.norm', np.take(B[:], np.array(k), axis=k_index).T)
A = np.arange(1, 25, dtype=dt).reshape(2, 3, 4)
OpArgMngr.add_workload('linalg.norm', A, ord=None, axis=None)
OpArgMngr.add_workload('linalg.norm', A, ord=None, axis=None, keepdims=True)
for k in range(A.ndim):
OpArgMngr.add_workload('linalg.norm', A, axis=k)
OpArgMngr.add_workload('linalg.norm', A, axis=k, keepdims=True)
for k in itertools.permutations(range(A.ndim), 2):
OpArgMngr.add_workload('linalg.norm', A, axis=k)
OpArgMngr.add_workload('linalg.norm', A, axis=k, keepdims=True)
OpArgMngr.add_workload('linalg.norm', np.array([[]], dtype=dt))
A = np.array([[1, 3], [5, 7]], dtype=dt)
OpArgMngr.add_workload('linalg.norm', A, 2)
OpArgMngr.add_workload('linalg.norm', A, -2)
OpArgMngr.add_workload('linalg.norm', A, 'nuc')
A = (1 / 10) * np.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=dt)
OpArgMngr.add_workload('linalg.norm', A)
OpArgMngr.add_workload('linalg.norm', A, 'fro')
OpArgMngr.add_workload('linalg.norm', A, 1)
OpArgMngr.add_workload('linalg.norm', A, -1)
for dt in [np.float32, np.float64]:
OpArgMngr.add_workload('linalg.norm', np.array([[1, 0, 1], [0, 1, 1]], dtype=dt))
OpArgMngr.add_workload('linalg.norm', np.array([[1, 0, 1], [0, 1, 1]], dtype=dt), 'fro')
def _add_workload_linalg_cholesky():
shapes = [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)]
dtypes = (np.float32, np.float64)
with random_seed(1):
for shape, dtype in itertools.product(shapes, dtypes):
a = _np.random.randn(*shape)
t = list(range(len(shape)))
t[-2:] = -1, -2
a = _np.matmul(a.transpose(t).conj(), a)
OpArgMngr.add_workload('linalg.cholesky', np.array(a, dtype=dtype))
# test_0_size
for dtype in dtypes:
a = np.zeros((0, 1, 1))
OpArgMngr.add_workload('linalg.cholesky', np.array(a, dtype=dtype))
a = np.zeros((1, 0, 0))
OpArgMngr.add_workload('linalg.cholesky', np.array(a, dtype=dtype))
def _add_workload_linalg_qr():
A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]])
OpArgMngr.add_workload('linalg.qr', A)
# default mode in numpy is 'reduced'
OpArgMngr.add_workload('linalg.qr', A, mode='reduced')
def _add_workload_linalg_inv():
OpArgMngr.add_workload('linalg.inv', np.array(_np.ones((0, 0)), dtype=np.float32))
OpArgMngr.add_workload('linalg.inv', np.array(_np.ones((0, 1, 1)), dtype=np.float64))
def _add_workload_linalg_solve():
shapes = [(0,0), (1,1), (5,5), (6,6), (3,5,5), (3,0,0), (2,5,5), (0,5,5), (2,3,4,4)]
nrhs = (0, 1, 2, 3)
dtypes = (np.float32, np.float64)
for dtype, shape in itertools.product(dtypes, shapes):
a = _np.random.rand(*shape)
shape_b = list(shape)
shape_b[-1] = 1
x = _np.random.rand(*shape_b)
b = _np.matmul(a, x)
shape_b.pop()
b = b.reshape(shape_b)
OpArgMngr.add_workload('linalg.solve', np.array(a, dtype=dtype), np.array(b, dtype=dtype))
for nrh in nrhs:
shape_b = list(shape)
shape_b[-1] = nrh
x = _np.random.rand(*shape_b)
b = _np.matmul(a, x)
OpArgMngr.add_workload('linalg.solve', np.array(a, dtype=dtype), np.array(b, dtype=dtype))
def _add_workload_linalg_det():
OpArgMngr.add_workload('linalg.det', np.array(_np.ones((2, 2)), dtype=np.float32))
OpArgMngr.add_workload('linalg.det', np.array(_np.ones((0, 1, 1)), dtype=np.float64))
def _add_workload_linalg_tensorinv():
shapes = [
(1, 20, 4, 5),
(2, 2, 10, 4, 5),
(2, 12, 5, 3, 4, 5),
(3, 2, 3, 4, 24)
]
dtypes = (np.float32, np.float64)
for dtype, shape in itertools.product(dtypes, shapes):
ind = shape[0]
prod_front = 1
prod_back = 1
for k in shape[1:ind + 1]:
prod_front *= k
for k in shape[1 + ind:]:
prod_back *= k
a_shape = (prod_back, prod_front)
a = _np.random.randn(*a_shape)
if prod_back == prod_front:
if _np.allclose(_np.dot(a, _np.linalg.inv(a)), _np.eye(prod_front)):
a_shape = shape[1:]
a = a.reshape(a_shape)
OpArgMngr.add_workload('linalg.tensorinv', np.array(a, dtype=dtype), ind)
def _add_workload_linalg_tensorsolve():
shapes = [
# a_shape.ndim <= 6
# (a_shape, b_shape, axes)
((1, 1), (1,), None),
((1, 1), (1, 1, 1, 1, 1), None),
((4, 4), (4,), None),
((2, 3, 3, 4, 2), (3, 4), (0, 2, 4)),
((1, 3, 3, 4, 4), (1, 3, 4), (1, 3)),
((1, 4, 1, 12, 3), (1, 2, 1, 2, 1, 3, 1), (1, 2, 4)),
]
dtypes = (np.float32, np.float64)
for dtype in dtypes:
for a_shape, b_shape, axes in shapes:
a_ndim = len(a_shape)
b_ndim = len(b_shape)
a_trans_shape = list(a_shape)
a_axes = list(range(0, a_ndim))
if axes is not None:
for k in axes:
a_axes.remove(k)
a_axes.insert(a_ndim, k)
for k in range(a_ndim):
a_trans_shape[k] = a_shape[a_axes[k]]
x_shape = a_trans_shape[-(a_ndim - b_ndim):]
prod = 1
for k in x_shape:
prod *= k
if prod * prod != _np.prod(a_shape):
raise ValueError("a is not square")
if prod != _np.prod(b_shape):
raise ValueError("a's shape and b's shape dismatch")
mat_shape = (prod, prod)
a_trans_shape = tuple(a_trans_shape)
x_shape = tuple(x_shape)
a_np = _np.eye(prod)
shape = mat_shape
while 1:
# generate well-conditioned matrices with small eigenvalues
D = _np.diag(_np.random.uniform(-1.0, 1.0, shape[-1]))
I = _np.eye(shape[-1]).reshape(shape)
v = _np.random.uniform(-1., 1., shape[-1]).reshape(shape[:-1] + (1,))
v = v / _np.linalg.norm(v, axis=-2, keepdims=True)
v_T = _np.swapaxes(v, -1, -2)
U = I - 2 * _np.matmul(v, v_T)
a = _np.matmul(U, D)
if (_np.linalg.cond(a, 2) < 4):
a_np = a.reshape(a_trans_shape)
break
x_np = _np.random.randn(*x_shape)
b_np = _np.tensordot(a_np, x_np, axes=len(x_shape))
a_origin_axes = list(range(a_np.ndim))
if axes is not None:
for k in range(a_np.ndim):
a_origin_axes[a_axes[k]] = k
a_np = a_np.transpose(a_origin_axes)
OpArgMngr.add_workload('linalg.tensorsolve', np.array(a_np, dtype=dtype), np.array(b_np, dtype=dtype), axes)
def _add_workload_linalg_pinv():
shapes = [
((1, 1), ()),
((5, 5), ()),
((5, 6), ()),
((6, 5), ()),
((2, 3, 3), (1,)),
((4, 6, 5), (4,)),
((2, 2, 3, 4), (2, 2)),
]
dtypes = (np.float32, np.float64)
for dtype in dtypes:
for a_shape, rcond_shape in shapes:
hermitian = False
a_np = _np.random.uniform(-10.0, 10.0, a_shape)
a_np = _np.array(a_np, dtype=dtype)
rcond_np = _np.random.uniform(0., 0.1, rcond_shape)
rcond_np = _np.array(rcond_np, dtype=dtype)
OpArgMngr.add_workload('linalg.pinv', np.array(a_np, dtype=dtype), np.array(rcond_np, dtype=dtype), hermitian)
def _add_workload_linalg_lstsq():
shapes = [
((0, 0), (0,)),
((0, 0), (0, 0)),
((4, 0), (4,)),
((4, 0), (4, 2)),
((0, 2), (0, 4)),
((4, 2), (4, 0)),
((0, 0), (0, 4)),
((0, 2), (0, 0)),
((4, 0), (4, 0)),
((4, 2), (4,)),
((4, 2), (4, 3)),
((4, 6), (4, 3)),
]
rconds = [None, "random", "warn"]
dtypes = (np.float32, np.float64)
for dtype, rcond in itertools.product(dtypes, rconds):
for a_shape, b_shape in shapes:
if rcond == "random":
rcond = _np.random.uniform(100, 200)
if rcond == "warn":
rcond = -1
a_np = _np.random.uniform(-10.0, 10.0, a_shape)
b_np = _np.random.uniform(-10.0, 10.0, b_shape)
a = np.array(a_np, dtype=dtype)
b = np.array(b_np, dtype=dtype)
OpArgMngr.add_workload('linalg.lstsq', a, b, rcond)
def _add_workload_linalg_eigvals():
OpArgMngr.add_workload('linalg.eigvals', np.array(_np.diag((0, 0)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eigvals', np.array(_np.diag((1, 1)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eigvals', np.array(_np.diag((2, 2)), dtype=np.float64))
def _add_workload_linalg_eig():
OpArgMngr.add_workload('linalg.eig', np.array(_np.diag((0, 0)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eig', np.array(_np.diag((1, 1)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eig', np.array(_np.diag((2, 2)), dtype=np.float64))
def _add_workload_linalg_eigvalsh():
OpArgMngr.add_workload('linalg.eigvalsh', np.array(_np.diag((0, 0)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eigvalsh', np.array(_np.diag((1, 1)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eigvalsh', np.array(_np.diag((2, 2)), dtype=np.float64))
def _add_workload_linalg_eigh():
OpArgMngr.add_workload('linalg.eigh', np.array(_np.diag((0, 0)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eigh', np.array(_np.diag((1, 1)), dtype=np.float64))
OpArgMngr.add_workload('linalg.eigh', np.array(_np.diag((2, 2)), dtype=np.float64))
def _add_workload_linalg_slogdet():
OpArgMngr.add_workload('linalg.slogdet', np.array(_np.ones((2, 2)), dtype=np.float32))
OpArgMngr.add_workload('linalg.slogdet', np.array(_np.ones((0, 1, 1)), dtype=np.float64))
def _add_workload_trace():
OpArgMngr.add_workload('trace', np.random.uniform(size=(4, 1)))
OpArgMngr.add_workload('trace', np.random.uniform(size=(3, 2)))
def _add_workload_tril():
OpArgMngr.add_workload('tril', np.random.uniform(size=(4, 1)))
for dt in ['float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8']:
OpArgMngr.add_workload('tril', np.ones((2, 2), dtype=dt))
a = np.array([
[[1, 1], [1, 1]],
[[1, 1], [1, 0]],
[[1, 1], [0, 0]],
], dtype=dt)
OpArgMngr.add_workload('tril', a)
arr = np.array([[1, 1, _np.inf],
[1, 1, 1],
[_np.inf, 1, 1]])
OpArgMngr.add_workload('tril', arr)
OpArgMngr.add_workload('tril', np.zeros((3, 3), dtype=dt))
import mxnet as mx
assertRaises(mx.MXNetError, np.tril, 10)
assertRaises(mx.MXNetError, np.tril, 2, 10)
def _add_workload_triu():
OpArgMngr.add_workload('triu', np.random.uniform(size=(4, 1)))
for dt in ['float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8']:
OpArgMngr.add_workload('triu', np.ones((2, 2), dtype=dt))
a = np.array([
[[1, 1], [1, 1]],
[[1, 1], [1, 0]],
[[1, 1], [0, 0]],
], dtype=dt)
OpArgMngr.add_workload('triu', a)
arr = np.array([[1, 1, _np.inf],
[1, 1, 1],
[_np.inf, 1, 1]])
OpArgMngr.add_workload('triu', arr)
OpArgMngr.add_workload('triu', np.zeros((3, 3), dtype=dt))
def _add_workload_einsum():
chars = 'abcdefghij'
sizes = [2, 3, 4, 5, 4, 3, 2, 6, 5, 4]
size_dict = dict(zip(chars, sizes))
configs = [
# test_einsum_broadcast
('ij...,j...->ij...', [(2, 3, 4), (3,)]),
('ij...,...j->ij...', [(2, 3, 4), (3,)]),
('ij...,j->ij...', [(2, 3, 4), (3,)]),
('cl, cpx->lpx', [(2, 3), (2, 3, 2731)]),
('aabb->ab', [(5, 5, 5, 5)]),
('mi,mi,mi->m', [(5, 5), (5, 5), (5, 5)]),
('a,ab,abc->abc', None),
('a,b,ab->ab', None),
('ea,fb,gc,hd,abcd->efgh', None),
('ea,fb,abcd,gc,hd->efgh', None),
('abcd,ea,fb,gc,hd->efgh', None),
# test_complex
('acdf,jbje,gihb,hfac,gfac,gifabc,hfac', None),
('acdf,jbje,gihb,hfac,gfac,gifabc,hfac', None),
('cd,bdhe,aidb,hgca,gc,hgibcd,hgac', None),
('abhe,hidj,jgba,hiab,gab', None),
('bde,cdh,agdb,hica,ibd,hgicd,hiac', None),
('chd,bde,agbc,hiad,hgc,hgi,hiad', None),
('chd,bde,agbc,hiad,bdi,cgh,agdb', None),
('bdhe,acad,hiab,agac,hibd', None),
# test_collapse
('ab,ab,c->', None),
('ab,ab,c->c', None),
('ab,ab,cd,cd->', None),
('ab,ab,cd,cd->ac', None),
('ab,ab,cd,cd->cd', None),
('ab,ab,cd,cd,ef,ef->', None),
# test_inner_product
('ab,ab', None),
('ab,ba', None),
('abc,abc', None),
('abc,bac', None),
('abc,cba', None),
# test_random_cases
('aab,fa,df,ecc->bde', None),
('ecb,fef,bad,ed->ac', None),
('bcf,bbb,fbf,fc->', None),
('bb,ff,be->e', None),
('bcb,bb,fc,fff->', None),
('fbb,dfd,fc,fc->', None),
('afd,ba,cc,dc->bf', None),
('adb,bc,fa,cfc->d', None),
('bbd,bda,fc,db->acf', None),
('dba,ead,cad->bce', None),
('aef,fbc,dca->bde', None),
# test_broadcasting_dot_cases
('ijk,kl,jl', [(1, 5, 4), (4, 6), (5, 6)]),
('ijk,kl,jl,i->i', [(1, 5, 4), (4, 6), (5, 6), (10)]),
('abjk,kl,jl', [(1, 1, 5, 4), (4, 6), (5, 6)]),
('abjk,kl,jl,ab->ab', [(1, 1, 5, 4), (4, 6), (5, 6), (7, 7)]),
('obk,ijk->ioj', [(2, 4, 8), (2, 4, 8)]),
]
# check_einsum_sums
configs.extend([('i->', [(i,)]) for i in range(1, 17)])
configs.extend([('...i->...', [(2, 3, i,)]) for i in range(1, 17)])
configs.extend([('i...->...', [(2, i,)]) for i in range(1, 17)])
configs.extend([('i...->...', [(2, 3, i,)]) for i in range(1, 17)])
configs.extend([('ii', [(i, i,)]) for i in range(1, 17)])
configs.extend([('..., ...', [(3, i,), (2, 3, i,)]) for i in range(1, 17)])
configs.extend([('...i, ...i', [(2, 3, i,), (i,)]) for i in range(1, 17)])
configs.extend([('i..., i...', [(i, 3, 2,), (i,)]) for i in range(1, 11)])
configs.extend([('i, j', [(3,), (i,)]) for i in range(1, 17)])
configs.extend([('ij, j', [(4, i), (i,)]) for i in range(1, 17)])
configs.extend([('ji, j', [(i, 4), (i,)]) for i in range(1, 17)])
configs.extend([('ij, jk', [(4, i), (i, 6)]) for i in range(1, 8)])
configs.extend([
('ij,jk,kl', [(3, 4), (4, 5), (5, 6)]),
('ijk, jil -> kl', [(3, 4, 5), (4, 3, 2)]),
('i, i, i -> i', [(8,), (8,), (8,)]),
(',i->', [(), (9,)]),
('i,->', [(9,), ()]),
])
configs.extend([('...,...', [(n,), (n,)]) for n in range(1, 25)])
configs.extend([('i,i', [(n,), (n,)]) for n in range(1, 25)])
configs.extend([('i,->i', [(n,), ()]) for n in range(1, 25)])
configs.extend([(',i->i', [(), (n,)]) for n in range(1, 25)])
configs.extend([('i,->', [(n,), ()]) for n in range(1, 25)])
configs.extend([(',i->', [(), (n,)]) for n in range(1, 25)])
configs.extend([('...,...', [(n - 1,), (n - 1,)]) for n in range(1, 25)])
configs.extend([('i,i', [(n - 1,), (n - 1,)]) for n in range(1, 25)])
configs.extend([('i,->i', [(n - 1,), ()]) for n in range(1, 25)])
configs.extend([(',i->i', [(), (n - 1,)]) for n in range(1, 25)])
configs.extend([('i,->', [(n - 1,), ()]) for n in range(1, 25)])
configs.extend([(',i->', [(), (n - 1,)]) for n in range(1, 25)])
for optimize in [False, True]:
for config in configs:
subscripts, args = config
if args is None:
args = []
terms = subscripts.split('->')[0].split(',')
for term in terms:
dims = [size_dict[x] for x in term]
args.append(np.random.uniform(size=dims))
else:
args = [np.random.uniform(size=arg) for arg in args]
OpArgMngr.add_workload('einsum', subscripts, *args, optimize=optimize)
def _add_workload_expm1():
OpArgMngr.add_workload('expm1', np.random.uniform(size=(4, 1)))
OpArgMngr.add_workload('expm1', np.random.uniform(size=(1, 1)))
OpArgMngr.add_workload('expm1', np.array([_np.inf]))
OpArgMngr.add_workload('expm1', np.array([-_np.inf]))
OpArgMngr.add_workload('expm1', np.array([0.]))
OpArgMngr.add_workload('expm1', np.array([-0.]))
def _add_workload_argmax():
OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 0)
OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 1)
OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 2)
OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 3)
OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 4)
# OpArgMngr.add_workload('argmax', np.array([0, 1, 2, 3, _np.nan]))
# OpArgMngr.add_workload('argmax', np.array([0, 1, 2, _np.nan, 3]))
# OpArgMngr.add_workload('argmax', np.array([_np.nan, 0, 1, 2, 3]))
# OpArgMngr.add_workload('argmax', np.array([_np.nan, 0, _np.nan, 2, 3]))
OpArgMngr.add_workload('argmax', np.array([False, False, False, False, True]))
OpArgMngr.add_workload('argmax', np.array([False, False, False, True, False]))
OpArgMngr.add_workload('argmax', np.array([True, False, False, False, False]))
OpArgMngr.add_workload('argmax', np.array([True, False, True, False, False]))
def _add_workload_argmin():
OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 0)
OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 1)
OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 2)
OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 3)
OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 4)
# OpArgMngr.add_workload('argmin', np.array([0, 1, 2, 3, _np.nan]))
# OpArgMngr.add_workload('argmin', np.array([0, 1, 2, _np.nan, 3]))
# OpArgMngr.add_workload('argmin', np.array([_np.nan, 0, 1, 2, 3]))
# OpArgMngr.add_workload('argmin', np.array([_np.nan, 0, _np.nan, 2, 3]))
OpArgMngr.add_workload('argmin', np.array([False, False, False, False, True]))
OpArgMngr.add_workload('argmin', np.array([False, False, False, True, False]))
OpArgMngr.add_workload('argmin', np.array([True, False, False, False, False]))
OpArgMngr.add_workload('argmin', np.array([True, False, True, False, False]))
def _add_workload_around():
OpArgMngr.add_workload('around', np.array([1.56, 72.54, 6.35, 3.25]), decimals=1)
def _add_workload_round():
OpArgMngr.add_workload('round', np.array([1.56, 72.54, 6.35, 3.25]), decimals=1)
def _add_workload_round_():
OpArgMngr.add_workload('round_', np.array([1.56, 72.54, 6.35, 3.25]), decimals=1)
def _add_workload_argsort():
for dtype in [np.int32, np.float32]:
a = np.arange(101, dtype=dtype)
OpArgMngr.add_workload('argsort', a)
OpArgMngr.add_workload('argsort', np.array([[3, 2], [1, 0]]), 1)
OpArgMngr.add_workload('argsort', np.array([[3, 2], [1, 0]]), 0)
a = np.ones((3, 2, 1, 0))
for axis in range(-a.ndim, a.ndim):
OpArgMngr.add_workload('argsort', a, axis)
def _add_workload_sort():
OpArgMngr.add_workload('sort', np.random.uniform(0, 100), axis=None)
OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=()), axis=None)
OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=(2, 3, 4)), axis=None)
OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=(4, 3, 0)), axis=None)
OpArgMngr.add_workload('sort', np.random.randint(0, 100, size=(2, 3, 4)), axis=-1)
OpArgMngr.add_workload('sort', np.random.randint(0, 100, size=(4, 3, 5)), axis=-1, kind='mergesort')
OpArgMngr.add_workload('sort', np.random.randint(0, 100, size=(2, 3, 4)), axis=None, kind='quicksort')
OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=(4, 3, 0)))
def _add_workload_broadcast_arrays(array_pool):
OpArgMngr.add_workload('broadcast_arrays', array_pool['4x1'], array_pool['1x2'])
def _add_workload_broadcast_to():
OpArgMngr.add_workload('broadcast_to', np.array(0), (0,))
OpArgMngr.add_workload('broadcast_to', np.array(0), (1,))
OpArgMngr.add_workload('broadcast_to', np.array(0), (3,))
OpArgMngr.add_workload('broadcast_to', np.ones(1), (1,))
OpArgMngr.add_workload('broadcast_to', np.ones(1), (2,))
OpArgMngr.add_workload('broadcast_to', np.ones(1), (1, 2, 3))
OpArgMngr.add_workload('broadcast_to', np.arange(3), (3,))
OpArgMngr.add_workload('broadcast_to', np.arange(3), (1, 3))
OpArgMngr.add_workload('broadcast_to', np.arange(3), (2, 3))
OpArgMngr.add_workload('broadcast_to', np.ones(0), 0)
OpArgMngr.add_workload('broadcast_to', np.ones(1), 1)
OpArgMngr.add_workload('broadcast_to', np.ones(1), 2)
OpArgMngr.add_workload('broadcast_to', np.ones(1), (0,))
OpArgMngr.add_workload('broadcast_to', np.ones((1, 2)), (0, 2))
OpArgMngr.add_workload('broadcast_to', np.ones((2, 1)), (2, 0))
def _add_workload_clip():
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("float"), -12.8, 100.2)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("float"), 0, 0)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("int"), -120, 100)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("int"), 0.0, 2.0)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("int"), 0, 0)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("uint8"), 0, 0)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("uint8"), 0.0, 2.0)
OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("uint8"), -120, 100)
# OpArgMngr.add_workload('clip', np.random.normal(size=(1000,)), np.zeros((1000,))+0.5, 1)
# OpArgMngr.add_workload('clip', np.random.normal(size=(1000,)), 0, np.zeros((1000,))+0.5)
# OpArgMngr.add_workload('clip', np.array([0, 1, 2, 3, 4, 5, 6, 7]), 3)
# OpArgMngr.add_workload('clip', np.array([0, 1, 2, 3, 4, 5, 6, 7]), a_min=3)
# OpArgMngr.add_workload('clip', np.array([0, 1, 2, 3, 4, 5, 6, 7]), a_max=4)
OpArgMngr.add_workload('clip', np.array([-2., _np.nan, 0.5, 3., 0.25, _np.nan]), -1, 1)
def _add_workload_cumsum():
for ctype in _DTYPES:
OpArgMngr.add_workload('cumsum', np.array([1, 2, 10, 11, 6, 5, 4], dtype=ctype))
OpArgMngr.add_workload('cumsum', np.array([[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]], dtype=ctype), axis=0)
OpArgMngr.add_workload('cumsum', np.array([[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]], dtype=ctype), axis=1)
def _add_workload_ravel():
OpArgMngr.add_workload('ravel', np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]))
def _add_workload_dot():
OpArgMngr.add_workload('dot', np.random.normal(size=(2, 4)), np.random.normal(size=(4, 2)))
OpArgMngr.add_workload('dot', np.random.normal(size=(4, 2)), np.random.normal(size=(2, 1)))
OpArgMngr.add_workload('dot', np.random.normal(size=(4, 2)), np.random.normal(size=(2,)))
OpArgMngr.add_workload('dot', np.random.normal(size=(1, 2)), np.random.normal(size=(2, 4)))
OpArgMngr.add_workload('dot', np.random.normal(size=(2, 4)), np.random.normal(size=(4,)))
OpArgMngr.add_workload('dot', np.random.normal(size=(1, 2)), np.random.normal(size=(2, 1)))
OpArgMngr.add_workload('dot', np.ones((3, 1)), np.array([5.3]))
OpArgMngr.add_workload('dot', np.array([5.3]), np.ones((1, 3)))
OpArgMngr.add_workload('dot', np.random.normal(size=(1, 1)), np.random.normal(size=(1, 4)))
OpArgMngr.add_workload('dot', np.random.normal(size=(4, 1)), np.random.normal(size=(1, 1)))
dims = [(), (1,), (1, 1)]
for (dim1, dim2) in itertools.product(dims, dims):
b1 = np.zeros(dim1)
b2 = np.zeros(dim2)
OpArgMngr.add_workload('dot', b1, b2)
OpArgMngr.add_workload('dot', np.array([[1, 2], [3, 4]], dtype=float), np.array([[1, 0], [1, 1]], dtype=float))
OpArgMngr.add_workload('dot', np.random.normal(size=(1024, 16)), np.random.normal(size=(16, 32)))
def _add_workload_fix():
OpArgMngr.add_workload('fix', np.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]]))
OpArgMngr.add_workload('fix', np.array([3.14]))
def _add_workload_flip():
OpArgMngr.add_workload('flip', np.random.normal(size=(4, 4)), 1)
OpArgMngr.add_workload('flip', np.array([[0, 1, 2], [3, 4, 5]]), 1)
OpArgMngr.add_workload('flip', np.random.normal(size=(4, 4)), 0)
OpArgMngr.add_workload('flip', np.array([[0, 1, 2], [3, 4, 5]]), 0)
OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 0)
OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 1)
OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 2)
for i in range(4):
OpArgMngr.add_workload('flip', np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5), i)
OpArgMngr.add_workload('flip', np.array([[1, 2, 3], [4, 5, 6]]))
OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ())
OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), (0, 2))
OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), (1, 2))
def _add_workload_flipud():
OpArgMngr.add_workload('flipud', np.random.normal(size=(4, 4)))
OpArgMngr.add_workload('flipud', np.array([[0, 1, 2], [3, 4, 5]]))
OpArgMngr.add_workload('flipud', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]))
def _add_workload_fliplr():
OpArgMngr.add_workload('fliplr', np.random.normal(size=(4, 4)))
OpArgMngr.add_workload('fliplr', np.array([[0, 1, 2], [3, 4, 5]]))
OpArgMngr.add_workload('fliplr', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]))
def _add_workload_max(array_pool):
OpArgMngr.add_workload('max', array_pool['4x1'])
def _add_workload_amax(array_pool):
a = np.array([3, 4, 5, 10, -3, -5, 6.0])
b = np.array([[3, 6.0, 9.0],
[4, 10.0, 5.0],
[8, 3.0, 2.0]])
c = np.array(1)
OpArgMngr.add_workload('amax', array_pool['4x1'])
OpArgMngr.add_workload('amax', a)
OpArgMngr.add_workload('amax', b, axis=0)
OpArgMngr.add_workload('amax', b, axis=1)
OpArgMngr.add_workload('amax', c)
OpArgMngr.add_workload('amax', c, axis=None)
def _add_workload_min(array_pool):
OpArgMngr.add_workload('min', array_pool['4x1'])
def _add_workload_amin(array_pool):
a = np.array([3, 4, 5, 10, -3, -5, 6.0])
b = np.array([[3, 6.0, 9.0],
[4, 10.0, 5.0],
[8, 3.0, 2.0]])
c = np.array(1)
OpArgMngr.add_workload('amin', array_pool['4x1'])
OpArgMngr.add_workload('amin', a)
OpArgMngr.add_workload('amin', b, axis=0)
OpArgMngr.add_workload('amin', b, axis=1)
OpArgMngr.add_workload('amin', c)
OpArgMngr.add_workload('amin', c, axis=None)
def _add_workload_mean(array_pool):
OpArgMngr.add_workload('mean', array_pool['4x1'])
OpArgMngr.add_workload('mean', array_pool['4x1'], axis=0, keepdims=True)
OpArgMngr.add_workload('mean', np.array([[1, 2, 3], [4, 5, 6]]))
OpArgMngr.add_workload('mean', np.array([]).reshape(2,0,0))
OpArgMngr.add_workload('mean', np.array([[1, 2, 3], [4, 5, 6]]), axis=0)
OpArgMngr.add_workload('mean', np.array([[1, 2, 3], [4, 5, 6]]), axis=1)
def _add_workload_ones_like(array_pool):
OpArgMngr.add_workload('ones_like', array_pool['4x1'])
def _add_workload_atleast_nd():
a_0 = np.array(1)
b_0 = np.array(2)
a_1 = np.array([1, 2])
b_1 = np.array([2, 3])
a_2 = np.array([[1, 2], [1, 2]])
b_2 = np.array([[2, 3], [2, 3]])
a_3 = [a_2, a_2]
b_3 = [b_2, b_2]
OpArgMngr.add_workload('atleast_1d', a_0, b_0)
OpArgMngr.add_workload('atleast_1d', a_1, b_1)
OpArgMngr.add_workload('atleast_1d', a_2, b_2)
OpArgMngr.add_workload('atleast_1d', a_3, b_3)
OpArgMngr.add_workload('atleast_2d', a_0, b_0)
OpArgMngr.add_workload('atleast_2d', a_1, b_1)
OpArgMngr.add_workload('atleast_2d', a_2, b_2)
OpArgMngr.add_workload('atleast_2d', a_3, b_3)
OpArgMngr.add_workload('atleast_3d', a_0, b_0)
OpArgMngr.add_workload('atleast_3d', a_1, b_1)
OpArgMngr.add_workload('atleast_3d', a_2, b_2)
OpArgMngr.add_workload('atleast_3d', a_3, b_3)
def _add_workload_prod(array_pool):
OpArgMngr.add_workload('prod', array_pool['4x1'])
OpArgMngr.add_workload('prod', np.array([]).reshape(2,0,0))
def _add_workload_product(array_pool):
OpArgMngr.add_workload('product', array_pool['4x1'])
def _add_workload_repeat(array_pool):
OpArgMngr.add_workload('repeat', array_pool['4x1'], 3)
OpArgMngr.add_workload('repeat', np.array(_np.arange(12).reshape(4, 3)[:, 2]), 3)
m = _np.array([1, 2, 3, 4, 5, 6])
m_rect = m.reshape((2, 3))
OpArgMngr.add_workload('repeat', np.array(m), [1, 3, 2, 1, 1, 2]) # Argument "repeats" only supports int
OpArgMngr.add_workload('repeat', np.array(m), 2)
B = np.array(m_rect)
OpArgMngr.add_workload('repeat', B, [2, 1], axis=0) # Argument "repeats" only supports int
OpArgMngr.add_workload('repeat', B, [1, 3, 2], axis=1) # Argument "repeats" only supports int
OpArgMngr.add_workload('repeat', B, 2, axis=0)
OpArgMngr.add_workload('repeat', B, 2, axis=1)
# test_repeat_broadcasting
a = _np.arange(60).reshape(3, 4, 5)
for axis in itertools.chain(range(-a.ndim, a.ndim), [None]):
OpArgMngr.add_workload('repeat', np.array(a), 2, axis=axis)
OpArgMngr.add_workload('repeat', np.array(a), [2], axis=axis) # Argument "repeats" only supports int
def _add_workload_reshape():
arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])
OpArgMngr.add_workload('reshape', arr, (2, 6))
OpArgMngr.add_workload('reshape', arr, (3, 4))
# OpArgMngr.add_workload('reshape', arr, (3, 4), order='F') # Items are not equal with order='F'
OpArgMngr.add_workload('reshape', arr, (3, 4), order='C')
OpArgMngr.add_workload('reshape', np.array(_np.ones(100)), (100, 1, 1))
# test_reshape_order
a = np.array(_np.arange(6))
# OpArgMngr.add_workload('reshape', a, (2, 3), order='F') # Items are not equal with order='F'
a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]])
b = a[:, 1]
# OpArgMngr.add_workload('reshape', b, (2, 2), order='F') # Items are not equal with order='F'
a = np.array(_np.ones((0, 2)))
OpArgMngr.add_workload('reshape', a, (-1, 2))
def _add_workload_rint(array_pool):
OpArgMngr.add_workload('rint', np.array(4607998452777363968))
OpArgMngr.add_workload('rint', array_pool['4x1'])
def _add_workload_roll():
# test_roll1d(self)
OpArgMngr.add_workload('roll', np.array(_np.arange(10)), 2)
# test_roll2d(self)
x2 = np.array(_np.reshape(_np.arange(10), (2, 5)))
OpArgMngr.add_workload('roll', x2, 1)
OpArgMngr.add_workload('roll', x2, 1, axis=0)
OpArgMngr.add_workload('roll', x2, 1, axis=1)
# # Roll multiple axes at once.
OpArgMngr.add_workload('roll', x2, 1, axis=(0, 1))
OpArgMngr.add_workload('roll', x2, (1, 0), axis=(0, 1))
OpArgMngr.add_workload('roll', x2, (-1, 0), axis=(0, 1))
OpArgMngr.add_workload('roll', x2, (0, 1), axis=(0, 1))
OpArgMngr.add_workload('roll', x2, (0, -1), axis=(0, 1))
OpArgMngr.add_workload('roll', x2, (1, 1), axis=(0, 1))
OpArgMngr.add_workload('roll', x2, (-1, -1), axis=(0, 1))
# # Roll the same axis multiple times.
# OpArgMngr.add_workload('roll', x2, 1, axis=(0, 0)) # Check failed: axes[i - 1] < axes[i] (0 vs. 0) : axes have duplicates [0,0]
# OpArgMngr.add_workload('roll', x2, 1, axis=(1, 1)) # Check failed: axes[i - 1] < axes[i] (1 vs. 1) : axes have duplicates [1,1]
# # Roll more than one turn in either direction.
OpArgMngr.add_workload('roll', x2, 6, axis=1)
OpArgMngr.add_workload('roll', x2, -4, axis=1)
# # test_roll_empty
OpArgMngr.add_workload('roll', np.array([]), 1)
def _add_workload_stack(array_pool):
OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2)
OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2, 1)
OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2, -1)
OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2, -2)
OpArgMngr.add_workload('stack', np.random.normal(size=(2, 4, 3)), 2)
OpArgMngr.add_workload('stack', np.random.normal(size=(2, 4, 3)), -3)
OpArgMngr.add_workload('stack', np.array([[], [], []]), 1)
OpArgMngr.add_workload('stack', np.array([[], [], []]))
def _add_workload_sum():
# OpArgMngr.add_workload('sum', np.ones(101, dtype=bool))
OpArgMngr.add_workload('sum', np.arange(1, 10).reshape((3, 3)), axis=1, keepdims=True)
OpArgMngr.add_workload('sum', np.ones(500, dtype=np.float32)/10.)
OpArgMngr.add_workload('sum', np.ones(500, dtype=np.float64)/10.)
for dt in (np.float16, np.float32, np.float64):
for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127,
128, 1024, 1235):
d = np.arange(1, v + 1, dtype=dt)
OpArgMngr.add_workload('sum', d)
d = np.ones(500, dtype=dt)
OpArgMngr.add_workload('sum', d[::2])
OpArgMngr.add_workload('sum', d[1::2])
OpArgMngr.add_workload('sum', d[::3])
OpArgMngr.add_workload('sum', d[1::3])
OpArgMngr.add_workload('sum', d[::-2])
OpArgMngr.add_workload('sum', d[-1::-2])
OpArgMngr.add_workload('sum', d[::-3])
OpArgMngr.add_workload('sum', d[-1::-3])
d = np.ones((1,), dtype=dt)
d += d
OpArgMngr.add_workload('sum', d)
# OpArgMngr.add_workload('sum', np.array([3]), initial=2)
# OpArgMngr.add_workload('sum', np.array([0.2]), initial=0.1)
def _add_workload_take():
OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array([], int))
for mode in ['wrap', 'clip']:
OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array(-1, int), mode=mode)
OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array(4, int), mode=mode)
OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array([-1], int), mode=mode)
OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array([4], int), mode=mode)
x = (np.random.normal(size=24)*100).reshape((2, 3, 4))
# OpArgMngr.add_workload('take', x, np.array([-1], int), axis=0)
OpArgMngr.add_workload('take', x, np.array([-1], int), axis=0, mode='clip')
OpArgMngr.add_workload('take', x, np.array([2], int), axis=0, mode='clip')
OpArgMngr.add_workload('take', x, np.array([-1], int), axis=0, mode='wrap')
OpArgMngr.add_workload('take', x, np.array([2], int), axis=0, mode='wrap')
OpArgMngr.add_workload('take', x, np.array([3], int), axis=0, mode='wrap')
def _add_workload_unique():
OpArgMngr.add_workload('unique', np.array([5, 7, 1, 2, 1, 5, 7]*10), True, True, True)
OpArgMngr.add_workload('unique', np.array([]), True, True, True)
OpArgMngr.add_workload('unique', np.array([[0, 1, 0], [0, 1, 0]]))
OpArgMngr.add_workload('unique', np.array([[0, 1, 0], [0, 1, 0]]), axis=0)
OpArgMngr.add_workload('unique', np.array([[0, 1, 0], [0, 1, 0]]), axis=1)
# OpArgMngr.add_workload('unique', np.arange(10, dtype=np.uint8).reshape(-1, 2).astype(bool), axis=1)
def _add_workload_delete():
a = np.arange(5)
nd_a = np.arange(5).repeat(2).reshape(1, 5, 2)
lims = [-6, -2, 0, 1, 2, 4, 5]
steps = [-3, -1, 1, 3]
for start in lims:
for stop in lims:
for step in steps:
s = slice(start, stop, step)
OpArgMngr.add_workload('delete', a, s)
OpArgMngr.add_workload('delete', nd_a, s, axis=1)
# mxnet.numpy arrays, even 0-sized, have a float32 dtype. Starting with numpy 1.19, the
# index array's of delete() must be of integer or boolean type, so we force that below.
OpArgMngr.add_workload('delete', a, np.array([], dtype='int32'), axis=0)
OpArgMngr.add_workload('delete', a, 0)
OpArgMngr.add_workload('delete', a, np.array([], dtype='int32'))
OpArgMngr.add_workload('delete', a, np.array([0, 1], dtype='int32'))
OpArgMngr.add_workload('delete', a, slice(1, 2))
OpArgMngr.add_workload('delete', a, slice(1, -2))
k = np.arange(10).reshape(2, 5)
OpArgMngr.add_workload('delete', k, slice(60, None), axis=1)
def _add_workload_var(array_pool):
OpArgMngr.add_workload('var', array_pool['4x1'])
OpArgMngr.add_workload('var', np.array([_np.float16(1.)]))
OpArgMngr.add_workload('var', np.array([1]))
OpArgMngr.add_workload('var', np.array([1.]))
OpArgMngr.add_workload('var', np.array([[1, 2, 3], [4, 5, 6]]))
OpArgMngr.add_workload('var', np.array([[1, 2, 3], [4, 5, 6]]), 0)
OpArgMngr.add_workload('var', np.array([[1, 2, 3], [4, 5, 6]]), 1)
OpArgMngr.add_workload('var', np.array([_np.nan]))
OpArgMngr.add_workload('var', np.array([1, -1, 1, -1]))
OpArgMngr.add_workload('var', np.array([1,2,3,4], dtype='f8'))
def _add_workload_zeros_like(array_pool):
OpArgMngr.add_workload('zeros_like', array_pool['4x1'])
OpArgMngr.add_workload('zeros_like', np.random.uniform(size=(3, 3)).astype(np.float64), dtype=np.int64)
OpArgMngr.add_workload('zeros_like', np.random.uniform(size=(3, 3)).astype(np.float32), dtype=np.float64)
OpArgMngr.add_workload('zeros_like', np.random.randint(2, size = (3, 3)), dtype=int)
def _add_workload_full_like(array_pool):
OpArgMngr.add_workload('full_like', array_pool['4x1'], 1)
OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(1,3,4), dtype='float64'), 1)
OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(9,3,1)), 2, dtype=np.int64)
OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(9,3)), _np.nan)
OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(2,0)), 0, dtype=np.float32)
def _add_workload_outer():
OpArgMngr.add_workload('outer', np.ones((5)), np.ones((2)))
def _add_workload_kron():
OpArgMngr.add_workload('kron', np.ones((5)), np.ones((2)))
OpArgMngr.add_workload('kron', np.arange(16).reshape((4,4)), np.ones((4,4)))
OpArgMngr.add_workload('kron', np.ones((2,4)), np.zeros((2,4)))
OpArgMngr.add_workload('kron', np.ones(()), np.ones(()))
def _add_workload_meshgrid():
OpArgMngr.add_workload('meshgrid', np.array([1, 2, 3]))
OpArgMngr.add_workload('meshgrid', np.array([1, 2, 3]), np.array([4, 5, 6, 7]))
OpArgMngr.add_workload('meshgrid', np.array([1, 2, 3]), np.array([4, 5, 6, 7]), indexing='ij')
def _add_workload_abs():
OpArgMngr.add_workload('abs', np.random.uniform(size=(11,)).astype(np.float32))
OpArgMngr.add_workload('abs', np.random.uniform(size=(5,)).astype(np.float64))
OpArgMngr.add_workload('abs', np.array([_np.inf, -_np.inf, _np.nan]))
def _add_workload_fabs():
OpArgMngr.add_workload('fabs', np.random.uniform(size=(11,)).astype(np.float32))
OpArgMngr.add_workload('fabs', np.random.uniform(size=(5,)).astype(np.float64))
OpArgMngr.add_workload('fabs', np.array([_np.inf, -_np.inf, _np.nan]))
def _add_workload_add(array_pool):
OpArgMngr.add_workload('add', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('add', array_pool['4x1'], 2)
OpArgMngr.add_workload('add', 2, array_pool['4x1'])
OpArgMngr.add_workload('add', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_arctan2():
OpArgMngr.add_workload('arctan2', np.array([1, -1, 1]), np.array([1, 1, -1]))
OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([np.NZERO, np.NZERO]))
OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([np.PZERO, np.PZERO]))
OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([-1, -1]))
OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([1, 1]))
OpArgMngr.add_workload('arctan2', np.array([-1, -1]), np.array([np.PZERO, np.NZERO]))
OpArgMngr.add_workload('arctan2', np.array([1, 1]), np.array([np.PZERO, np.NZERO]))
OpArgMngr.add_workload('arctan2', np.array([1, -1, 1, -1]), np.array([-_np.inf, -_np.inf, _np.inf, _np.inf]))
OpArgMngr.add_workload('arctan2', np.array([_np.inf, -_np.inf]), np.array([1, 1]))
OpArgMngr.add_workload('arctan2', np.array([_np.inf, -_np.inf]), np.array([-_np.inf, -_np.inf]))
OpArgMngr.add_workload('arctan2', np.array([_np.inf, -_np.inf]), np.array([_np.inf, _np.inf]))
def _add_workload_copysign():
OpArgMngr.add_workload('copysign', np.array([1, 0, 0]), np.array([-1, -1, 1]))
OpArgMngr.add_workload('copysign', np.array([-2, 5, 1, 4, 3], dtype=np.float16), np.array([0, 1, 2, 4, 2], dtype=np.float16))
def _add_workload_degrees():
OpArgMngr.add_workload('degrees', np.array(np.pi))
OpArgMngr.add_workload('degrees', np.array(-0.5*np.pi))
def _add_workload_true_divide():
for dt in [np.float32, np.float64, np.float16]:
OpArgMngr.add_workload('true_divide', np.array([10, 10, -10, -10], dt), np.array([20, -20, 20, -20], dt))
def _add_workload_inner():
OpArgMngr.add_workload('inner', np.zeros(shape=(1, 80), dtype=np.float64), np.zeros(shape=(1, 80), dtype=np.float64))
for dt in [np.float32, np.float64]:
# OpArgMngr.add_workload('inner', np.array(3, dtype=dt)[()], np.array([1, 2], dtype=dt))
# OpArgMngr.add_workload('inner', np.array([1, 2], dtype=dt), np.array(3, dtype=dt)[()])
A = np.array([[1, 2], [3, 4]], dtype=dt)
B = np.array([[1, 3], [2, 4]], dtype=dt)
C = np.array([1, 1], dtype=dt)
OpArgMngr.add_workload('inner', A.T, C)
OpArgMngr.add_workload('inner', C, A.T)
OpArgMngr.add_workload('inner', B, C)
OpArgMngr.add_workload('inner', C, B)
OpArgMngr.add_workload('inner', A, B)
OpArgMngr.add_workload('inner', A, A)
OpArgMngr.add_workload('inner', A, A.copy())
a = np.arange(5).astype(dt)
b = a[::-1]
OpArgMngr.add_workload('inner', b, a)
a = np.arange(24).reshape(2,3,4).astype(dt)
b = np.arange(24, 48).reshape(2,3,4).astype(dt)
OpArgMngr.add_workload('inner', a, b)
OpArgMngr.add_workload('inner', b, a)
def _add_workload_insert():
a = np.arange(10)
OpArgMngr.add_workload('insert', a, 0, np.array([0]))
OpArgMngr.add_workload('insert', a, np.array([], dtype=np.int64), np.array([]))
OpArgMngr.add_workload('insert', a, np.array([0, 1], dtype=np.int64), np.array([1, 2]))
OpArgMngr.add_workload('insert', a, slice(1, 2), np.array([1, 2]))
OpArgMngr.add_workload('insert', a, slice(1, -2, -1), np.array([]))
OpArgMngr.add_workload('insert', np.array([0, 1, 2]), np.array([1, 1, 1], dtype=np.int64), np.array([3, 4, 5]))
OpArgMngr.add_workload('insert', np.array(1), 0, np.array([0]))
def _add_workload_interp():
xp0 = np.linspace(0, 1, 5)
fp0 = np.linspace(0, 1, 5)
x0 = np.linspace(0, 1, 50)
xp1 = np.array([1, 2, 3, 4])
fp1 = np.array([1, 2, _np.inf, 4])
x1 = np.array([1, 2, 2.5, 3, 4])
xp2 = np.arange(0, 10, 0.0001)
fp2 = np.sin(xp2)
xp3 = np.array([190, -190, 350, -350])
fp3 = np.array([5, 10, 3, 4])
x3 = np.array([-180, -170, -185, 185, -10, -5, 0, 365])
OpArgMngr.add_workload('interp', x0, xp0, fp0)
OpArgMngr.add_workload('interp', x1, xp1, fp1)
OpArgMngr.add_workload('interp', np.pi, xp2, fp2)
OpArgMngr.add_workload('interp', x3, xp3, fp3, period=360)
for size in range(1, 10):
xp = np.arange(size, dtype=np.float64)
fp = np.ones(size, dtype=np.float64)
incpts = np.array([-1, 0, size - 1, size], dtype=np.float64)
decpts = incpts[::-1]
OpArgMngr.add_workload('interp', incpts, xp, fp)
OpArgMngr.add_workload('interp', decpts, xp, fp)
OpArgMngr.add_workload('interp', incpts, xp, fp, left=0)
OpArgMngr.add_workload('interp', decpts, xp, fp, left=0)
OpArgMngr.add_workload('interp', incpts, xp, fp, right=2)
OpArgMngr.add_workload('interp', decpts, xp, fp, right=2)
OpArgMngr.add_workload('interp', incpts, xp, fp, left=0, right=2)
OpArgMngr.add_workload('interp', decpts, xp, fp, left=0, right=2)
def _add_workload_hypot():
OpArgMngr.add_workload('hypot', np.array(1), np.array(1))
OpArgMngr.add_workload('hypot', np.array(0), np.array(0))
OpArgMngr.add_workload('hypot', np.array(_np.nan), np.array(_np.nan))
OpArgMngr.add_workload('hypot', np.array(_np.nan), np.array(1))
OpArgMngr.add_workload('hypot', np.array(_np.nan), np.array(_np.inf))
OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(_np.nan))
OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(0))
OpArgMngr.add_workload('hypot', np.array(0), np.array(_np.inf))
OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(_np.inf))
OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(23.0))
def _add_workload_lcm():
OpArgMngr.add_workload('lcm', np.array([12, 120], dtype=np.int8), np.array([20, 200], dtype=np.int8))
OpArgMngr.add_workload('lcm', np.array([12, 120], dtype=np.uint8), np.array([20, 200], dtype=np.uint8))
OpArgMngr.add_workload('lcm', np.array(195225786*2, dtype=np.int32), np.array(195225786*5, dtype=np.int32))
def _add_workload_gcd():
OpArgMngr.add_workload('gcd', np.array([24, 30], dtype=np.int8), np.array([20, 75], dtype=np.int8))
OpArgMngr.add_workload('gcd', np.array([24, 30], dtype=np.uint8), np.array([20, 75], dtype=np.uint8))
OpArgMngr.add_workload('gcd', np.array(195225786*2, dtype=np.int32), np.array(195225786*5, dtype=np.int32))
def _add_workload_bitwise_or():
OpArgMngr.add_workload('bitwise_or', np.array([False, False, True, True], dtype=np.bool),
np.array([False, True, False, True], dtype=np.bool))
for dtype in [np.int8, np.int32, np.int64]:
zeros = np.array([0], dtype=dtype)
ones = np.array([-1], dtype=dtype)
OpArgMngr.add_workload('bitwise_or', zeros, zeros)
OpArgMngr.add_workload('bitwise_or', ones, zeros)
OpArgMngr.add_workload('bitwise_or', zeros, ones)
OpArgMngr.add_workload('bitwise_or', ones, ones)
def _add_workload_bitwise_and():
OpArgMngr.add_workload('bitwise_and', np.array([False, False, True, True], dtype=np.bool),
np.array([False, True, False, True], dtype=np.bool))
for dtype in [np.int8, np.int32, np.int64]:
zeros = np.array([0], dtype=dtype)
ones = np.array([-1], dtype=dtype)
OpArgMngr.add_workload('bitwise_and', zeros, zeros)
OpArgMngr.add_workload('bitwise_and', ones, zeros)
OpArgMngr.add_workload('bitwise_and', zeros, ones)
OpArgMngr.add_workload('bitwise_and', ones, ones)
def _add_workload_bitwise_xor():
OpArgMngr.add_workload('bitwise_xor', np.array([False, False, True, True], dtype=np.bool),
np.array([False, True, False, True], dtype=np.bool))
for dtype in [np.int8, np.int32, np.int64]:
zeros = np.array([0], dtype=dtype)
ones = np.array([-1], dtype=dtype)
OpArgMngr.add_workload('bitwise_xor', zeros, zeros)
OpArgMngr.add_workload('bitwise_xor', ones, zeros)
OpArgMngr.add_workload('bitwise_xor', zeros, ones)
OpArgMngr.add_workload('bitwise_xor', ones, ones)
def _add_workload_bitwise_left_shift():
for dtype in [np.int8, np.int32, np.int64]:
twenty = np.array([20], dtype=dtype)
three = np.array([3], dtype=dtype)
OpArgMngr.add_workload('bitwise_left_shift', twenty, three)
OpArgMngr.add_workload('bitwise_left_shift', twenty, three)
OpArgMngr.add_workload('bitwise_left_shift', twenty, three)
OpArgMngr.add_workload('bitwise_left_shift', twenty, three)
OpArgMngr.add_workload('bitwise_left_shift', np.array([9223372036854775807], np.int64), np.array([1], np.int64))
OpArgMngr.add_workload('bitwise_left_shift', np.array([-9223372036854775808], np.int64), np.array([1], np.int64))
def _add_workload_bitwise_right_shift():
for dtype in [np.int8, np.int32, np.int64]:
twenty = np.array([20], dtype=dtype)
three = np.array([3], dtype=dtype)
OpArgMngr.add_workload('bitwise_right_shift', twenty, three)
OpArgMngr.add_workload('bitwise_right_shift', twenty, three)
OpArgMngr.add_workload('bitwise_right_shift', twenty, three)
OpArgMngr.add_workload('bitwise_right_shift', twenty, three)
OpArgMngr.add_workload('bitwise_right_shift', np.array([9223372036854775807], np.int64), np.array([1], np.int64))
OpArgMngr.add_workload('bitwise_right_shift', np.array([-9223372036854775808], np.int64), np.array([1], np.int64))
def _add_workload_ldexp():
OpArgMngr.add_workload('ldexp', np.array(2., np.float32), np.array(3, np.int8))
OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(3, np.int8))
OpArgMngr.add_workload('ldexp', np.array(2., np.float32), np.array(3, np.int32))
OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(3, np.int32))
OpArgMngr.add_workload('ldexp', np.array(2., np.float32), np.array(3, np.int64))
OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(3, np.int64))
OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(9223372036854775807, np.int64))
OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(-9223372036854775808, np.int64))
def _add_workload_logaddexp(array_pool):
OpArgMngr.add_workload('logaddexp', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('logaddexp', array_pool['4x1'], 2)
OpArgMngr.add_workload('logaddexp', 2, array_pool['4x1'])
OpArgMngr.add_workload('logaddexp', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_subtract(array_pool):
OpArgMngr.add_workload('subtract', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('subtract', array_pool['4x1'], 2)
OpArgMngr.add_workload('subtract', 2, array_pool['4x1'])
OpArgMngr.add_workload('subtract', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_multiply(array_pool):
OpArgMngr.add_workload('multiply', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('multiply', array_pool['4x1'], 2)
OpArgMngr.add_workload('multiply', 2, array_pool['4x1'])
OpArgMngr.add_workload('multiply', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_power(array_pool):
OpArgMngr.add_workload('power', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('power', array_pool['4x1'], 2)
OpArgMngr.add_workload('power', 2, array_pool['4x1'])
OpArgMngr.add_workload('power', array_pool['4x1'], array_pool['1x1x0'])
OpArgMngr.add_workload('power', np.array([1, 2, 3], np.int32), 2.00001)
OpArgMngr.add_workload('power', np.array([15, 15], np.int64), np.array([15, 15], np.int64))
OpArgMngr.add_workload('power', 0, np.arange(1, 10))
def _add_workload_mod(array_pool):
OpArgMngr.add_workload('mod', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('mod', array_pool['4x1'], 2)
OpArgMngr.add_workload('mod', 2, array_pool['4x1'])
OpArgMngr.add_workload('mod', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_fmod(array_pool):
OpArgMngr.add_workload('fmod', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('fmod', array_pool['4x1'], 2)
OpArgMngr.add_workload('fmod', 2, array_pool['4x1'])
OpArgMngr.add_workload('fmod', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_floor_divide(array_pool):
OpArgMngr.add_workload('floor_divide', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('floor_divide', array_pool['4x1'], 2)
OpArgMngr.add_workload('floor_divide', 2, array_pool['4x1'])
OpArgMngr.add_workload('floor_divide', array_pool['4x1'], array_pool['1x1x0'])
OpArgMngr.add_workload('floor_divide', np.array([-1, -2, -3], np.float32), 1.9999)
OpArgMngr.add_workload('floor_divide', np.array([1000, -200, -3], np.int64), 3)
OpArgMngr.add_workload('floor_divide', np.array([1, -2, -3, 4, -5], np.int32), 2.0001)
OpArgMngr.add_workload('floor_divide', np.array([1, -50, -0.2, 40000, 0], np.float64), -7)
def _add_workload_remainder():
# test remainder basic
OpArgMngr.add_workload('remainder', np.array([0, 1, 2, 4, 2], dtype=np.float16),
np.array([-2, 5, 1, 4, 3], dtype=np.float16))
def _signs(dt):
if dt in [np.uint8]:
return (+1,)
else:
return (+1, -1)
for ct in _DTYPES:
for sg1, sg2 in itertools.product(_signs(ct), _signs(ct)):
a = np.array(sg1*71, dtype=ct)
b = np.array(sg2*19, dtype=ct)
OpArgMngr.add_workload('remainder', a, b)
# test remainder exact
nlst = list(range(-127, 0))
plst = list(range(1, 128))
dividend = nlst + [0] + plst
divisor = nlst + plst
arg = list(itertools.product(dividend, divisor))
tgt = list(divmod(*t) for t in arg)
a, b = np.array(arg, dtype=int).T
# convert exact integer results from Python to float so that
# signed zero can be used, it is checked.
for dt in [np.float16, np.float32, np.float64]:
fa = a.astype(dt)
fb = b.astype(dt)
OpArgMngr.add_workload('remainder', fa, fb)
# test_float_remainder_roundoff
for ct in _FLOAT_DTYPES:
for sg1, sg2 in itertools.product((+1, -1), (+1, -1)):
a = np.array(sg1*78*6e-8, dtype=ct)
b = np.array(sg2*6e-8, dtype=ct)
OpArgMngr.add_workload('remainder', a, b)
# test_float_remainder_corner_cases
# Check remainder magnitude.
for ct in _FLOAT_DTYPES:
b = _np.array(1.0, dtype=ct)
a = np.array(_np.nextafter(_np.array(0.0, dtype=ct), -b), dtype=ct)
b = np.array(b, dtype=ct)
OpArgMngr.add_workload('remainder', a, b)
OpArgMngr.add_workload('remainder', -a, -b)
# Check nans, inf
for ct in [np.float16, np.float32, np.float64]:
fone = np.array(1.0, dtype=ct)
fzer = np.array(0.0, dtype=ct)
finf = np.array(_np.inf, dtype=ct)
fnan = np.array(_np.nan, dtype=ct)
# OpArgMngr.add_workload('remainder', fone, fzer) # failed
OpArgMngr.add_workload('remainder', fone, fnan)
OpArgMngr.add_workload('remainder', finf, fone)
def _add_workload_maximum(array_pool):
OpArgMngr.add_workload('maximum', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('maximum', array_pool['4x1'], 2)
OpArgMngr.add_workload('maximum', 2, array_pool['4x1'])
OpArgMngr.add_workload('maximum', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_fmax(array_pool):
OpArgMngr.add_workload('fmax', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('fmax', array_pool['4x1'], 2)
OpArgMngr.add_workload('fmax', 2, array_pool['4x1'])
OpArgMngr.add_workload('fmax', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_minimum(array_pool):
OpArgMngr.add_workload('minimum', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('minimum', array_pool['4x1'], 2)
OpArgMngr.add_workload('minimum', 2, array_pool['4x1'])
OpArgMngr.add_workload('minimum', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_fmin(array_pool):
OpArgMngr.add_workload('fmin', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('fmin', array_pool['4x1'], 2)
OpArgMngr.add_workload('fmin', 2, array_pool['4x1'])
OpArgMngr.add_workload('fmin', array_pool['4x1'], array_pool['1x1x0'])
def _add_workload_negative(array_pool):
OpArgMngr.add_workload('negative', array_pool['4x1'])
def _add_workload_absolute(array_pool):
OpArgMngr.add_workload('absolute', array_pool['4x1'])
def _add_workload_sign(array_pool):
OpArgMngr.add_workload('sign', array_pool['4x1'])
OpArgMngr.add_workload('sign', np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('sign', np.array([-.1, 0, .1]))
# OpArgMngr.add_workload('sign', np.array(_np.array([_np.nan]))) # failed
def _add_workload_exp(array_pool):
OpArgMngr.add_workload('exp', array_pool['4x1'])
def _add_workload_log(array_pool):
OpArgMngr.add_workload('log', array_pool['4x1'])
def _add_workload_log2(array_pool):
OpArgMngr.add_workload('log2', array_pool['4x1'])
OpArgMngr.add_workload('log2', np.array(2.**65))
OpArgMngr.add_workload('log2', np.array(_np.inf))
OpArgMngr.add_workload('log2', np.array(1.))
def _add_workload_log1p():
OpArgMngr.add_workload('log1p', np.array(-1.))
OpArgMngr.add_workload('log1p', np.array(_np.inf))
OpArgMngr.add_workload('log1p', np.array(1e-6))
def _add_workload_log10(array_pool):
OpArgMngr.add_workload('log10', array_pool['4x1'])
def _add_workload_sqrt():
OpArgMngr.add_workload('sqrt', np.array([1, np.PZERO, np.NZERO, _np.inf, _np.nan]))
def _add_workload_square():
OpArgMngr.add_workload('square', np.array([-2, 5, 1, 4, 3], dtype=np.float16))
def _add_workload_cbrt():
OpArgMngr.add_workload('cbrt', np.array(-2.5**3, dtype=np.float32))
OpArgMngr.add_workload('cbrt', np.array([1., 2., -3., _np.inf, -_np.inf])**3)
OpArgMngr.add_workload('cbrt', np.array([_np.inf, -_np.inf, _np.nan]))
def _add_workload_reciprocal():
for ctype in [np.float16, np.float32, np.float64]:
OpArgMngr.add_workload('reciprocal', np.array([-2, 5, 1, 4, 3], dtype=ctype))
OpArgMngr.add_workload('reciprocal', np.array([-2, 0, 1, 0, 3], dtype=ctype))
OpArgMngr.add_workload('reciprocal', np.array([0], dtype=ctype))
def _add_workload_sin(array_pool):
OpArgMngr.add_workload('sin', array_pool['4x1'])
def _add_workload_cos(array_pool):
OpArgMngr.add_workload('cos', array_pool['4x1'])
def _add_workload_tan(array_pool):
OpArgMngr.add_workload('tan', array_pool['4x1'])
def _add_workload_sinh(array_pool):
OpArgMngr.add_workload('sinh', array_pool['4x1'])
def _add_workload_cosh(array_pool):
OpArgMngr.add_workload('cosh', array_pool['4x1'])
def _add_workload_tanh(array_pool):
OpArgMngr.add_workload('tanh', array_pool['4x1'])
def _add_workload_arcsin(array_pool):
OpArgMngr.add_workload('arcsin', array_pool['4x1'] - 2)
def _add_workload_arccos(array_pool):
OpArgMngr.add_workload('arccos', array_pool['4x1'] - 2)
def _add_workload_arctan(array_pool):
OpArgMngr.add_workload('arctan', array_pool['4x1'])
def _add_workload_arcsinh(array_pool):
OpArgMngr.add_workload('arcsinh', array_pool['4x1'])
def _add_workload_arccosh(array_pool):
OpArgMngr.add_workload('arccosh', array_pool['4x1'])
def _add_workload_arctanh(array_pool):
OpArgMngr.add_workload('arctanh', array_pool['4x1'] - 2)
def _add_workload_ceil(array_pool):
OpArgMngr.add_workload('ceil', array_pool['4x1'])
def _add_workload_turnc(array_pool):
OpArgMngr.add_workload('trunc', array_pool['4x1'])
def _add_workload_floor(array_pool):
OpArgMngr.add_workload('floor', array_pool['4x1'])
def _add_workload_logical_not(array_pool):
OpArgMngr.add_workload('logical_not', np.ones(10, dtype=np.int32))
OpArgMngr.add_workload('logical_not', array_pool['4x1'])
OpArgMngr.add_workload('logical_not', np.array([True, False, True, False], dtype=np.bool))
def _add_workload_bitwise_not():
OpArgMngr.add_workload('bitwise_not', np.array([True, False, True, False], dtype=np.bool))
for dtype in [np.int8, np.int32, np.int64]:
zeros = np.array([0], dtype=dtype)
ones = np.array([-1], dtype=dtype)
OpArgMngr.add_workload('bitwise_not', zeros)
OpArgMngr.add_workload('bitwise_not', ones)
def _add_workload_invert():
OpArgMngr.add_workload('invert', np.array([True, False, True, False], dtype=np.bool))
for dtype in [np.int8, np.int32, np.int64]:
zeros = np.array([0], dtype=dtype)
ones = np.array([-1], dtype=dtype)
OpArgMngr.add_workload('invert', zeros)
OpArgMngr.add_workload('invert', ones)
def _add_workload_vdot():
OpArgMngr.add_workload('vdot', np.random.normal(size=(2, 4)), np.random.normal(size=(4, 2)))
OpArgMngr.add_workload('vdot', np.random.normal(size=(2, 4)).astype(np.float64), np.random.normal(size=(2, 4)).astype(np.float64))
def _add_workload_matmul():
OpArgMngr.add_workload('matmul', np.random.normal(size=(2, 4)), np.random.normal(size=(4, 2)))
dtype = [np.float32, np.float64]
def test_shapes():
dims = [((1, 1), (2, 1, 1)), # broadcast first argument
((2, 1, 1), (1, 1)), # broadcast second argument
((2, 1, 1), (2, 1, 1)), # matrix stack sizes match
]
for dt, (dm1, dm2) in itertools.product(dtype, dims):
a = np.ones(dm1, dtype=dt)
b = np.ones(dm2, dtype=dt)
OpArgMngr.add_workload('matmul', a, b)
# vector vector returns scalars.
for dt in dtype:
a = np.ones((2,), dtype=dt)
b = np.ones((2,), dtype=dt)
OpArgMngr.add_workload('matmul', a, b)
def test_result_types():
mat = np.ones((1,1))
vec = np.ones((1,))
for dt in dtype:
m = mat.astype(dt)
v = vec.astype(dt)
for arg in [(m, v), (v, m), (m, m)]:
OpArgMngr.add_workload('matmul', *arg)
def test_scalar_output():
vec1 = np.array([2])
vec2 = np.array([3, 4]).reshape(1, -1)
for dt in dtype:
v1 = vec1.astype(dt)
v2 = vec2.astype(dt)
OpArgMngr.add_workload('matmul', v1, v2)
OpArgMngr.add_workload('matmul', v2.T, v1)
def test_vector_vector_values():
vec1 = np.array([1, 2])
vec2 = np.array([3, 4]).reshape(-1, 1)
for dt in dtype:
v1 = vec1.astype(dt)
v2 = vec2.astype(dt)
OpArgMngr.add_workload('matmul', v1, v2)
# no broadcast, we must make v1 into a 2d ndarray
OpArgMngr.add_workload('matmul', v2, v1.reshape(1, -1))
def test_vector_matrix_values():
vec = np.array([1, 2])
mat1 = np.array([[1, 2], [3, 4]])
mat2 = np.stack([mat1]*2, axis=0)
for dt in dtype:
v = vec.astype(dt)
m1 = mat1.astype(dt)
m2 = mat2.astype(dt)
OpArgMngr.add_workload('matmul', v, m1)
OpArgMngr.add_workload('matmul', v, m2)
def test_matrix_vector_values():
vec = np.array([1, 2])
mat1 = np.array([[1, 2], [3, 4]])
mat2 = np.stack([mat1]*2, axis=0)
for dt in dtype:
v = vec.astype(dt)
m1 = mat1.astype(dt)
m2 = mat2.astype(dt)
OpArgMngr.add_workload('matmul', m1, v)
OpArgMngr.add_workload('matmul', m2, v)
def test_matrix_matrix_values():
mat1 = np.array([[1, 2], [3, 4]])
mat2 = np.array([[1, 0], [1, 1]])
mat12 = np.stack([mat1, mat2], axis=0)
mat21 = np.stack([mat2, mat1], axis=0)
for dt in dtype:
m1 = mat1.astype(dt)
m2 = mat2.astype(dt)
m12 = mat12.astype(dt)
m21 = mat21.astype(dt)
# matrix @ matrix
OpArgMngr.add_workload('matmul', m1, m2)
OpArgMngr.add_workload('matmul', m2, m1)
# stacked @ matrix
OpArgMngr.add_workload('matmul', m12, m1)
# matrix @ stacked
OpArgMngr.add_workload('matmul', m1, m12)
# stacked @ stacked
OpArgMngr.add_workload('matmul', m12, m21)
test_shapes()
test_result_types()
test_scalar_output()
test_vector_vector_values()
test_vector_matrix_values()
test_matrix_vector_values()
test_matrix_matrix_values()
def _add_workload_vstack(array_pool):
OpArgMngr.add_workload('vstack', (array_pool['4x1'], np.random.uniform(size=(5, 1))))
OpArgMngr.add_workload('vstack', array_pool['4x1'])
OpArgMngr.add_workload('vstack', array_pool['1x1x0'])
def _add_workload_column_stack():
OpArgMngr.add_workload('column_stack', (np.array([1, 2, 3]), np.array([2, 3, 4])))
OpArgMngr.add_workload('column_stack', (np.array([[1], [2], [3]]), np.array([[2], [3], [4]])))
OpArgMngr.add_workload('column_stack', [np.array(_np.arange(3)) for _ in range(2)])
def _add_workload_hstack(array_pool):
OpArgMngr.add_workload('hstack', (np.random.uniform(size=(1, 4)), np.random.uniform(size=(1, 4))))
OpArgMngr.add_workload('hstack', array_pool['4x1'])
OpArgMngr.add_workload('hstack', array_pool['1x1x0'])
def _add_workload_dstack(array_pool):
OpArgMngr.add_workload('dstack', (np.random.uniform(size=(5, 1, 2)), np.random.uniform(size=(5, 1, 3))))
OpArgMngr.add_workload('dstack', array_pool['4x1'])
OpArgMngr.add_workload('dstack', array_pool['1x1x0'])
def _add_workload_equal(array_pool):
# TODO(junwu): fp16 does not work yet with TVM generated ops
# OpArgMngr.add_workload('equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan
# OpArgMngr.add_workload('equal', np.array([_np.nan]), np.array([_np.nan]))
OpArgMngr.add_workload('equal', array_pool['4x1'], array_pool['1x2'])
def _add_workload_not_equal(array_pool):
# TODO(junwu): fp16 does not work yet with TVM generated ops
# OpArgMngr.add_workload('not_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('not_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan
# OpArgMngr.add_workload('not_equal', np.array([_np.nan]), np.array([_np.nan]))
OpArgMngr.add_workload('not_equal', array_pool['4x1'], array_pool['1x2'])
def _add_workload_greater(array_pool):
# TODO(junwu): fp16 does not work yet with TVM generated ops
# OpArgMngr.add_workload('greater', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('greater', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('greater', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('greater', array_pool['4x1'], 2)
OpArgMngr.add_workload('greater', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan
# OpArgMngr.add_workload('greater', np.array([_np.nan]), np.array([_np.nan]))
def _add_workload_greater_equal(array_pool):
# TODO(junwu): fp16 does not work yet with TVM generated ops
# OpArgMngr.add_workload('greater_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('greater_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('greater_equal', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('greater_equal', array_pool['4x1'], 2)
OpArgMngr.add_workload('greater_equal', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan
# OpArgMngr.add_workload('greater_equal', np.array([_np.nan]), np.array([_np.nan]))
def _add_workload_less(array_pool):
# TODO(junwu): fp16 does not work yet with TVM generated ops
# OpArgMngr.add_workload('less', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('less', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('less', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('less', array_pool['4x1'], 2)
OpArgMngr.add_workload('less', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan
# OpArgMngr.add_workload('less', np.array([_np.nan]), np.array([_np.nan]))
def _add_workload_less_equal(array_pool):
# TODO(junwu): fp16 does not work yet with TVM generated ops
# OpArgMngr.add_workload('less_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16))
OpArgMngr.add_workload('less_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('less_equal', array_pool['4x1'], array_pool['1x2'])
OpArgMngr.add_workload('less_equal', array_pool['4x1'], 2)
OpArgMngr.add_workload('less_equal', 2, array_pool['4x1'])
# TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan
# OpArgMngr.add_workload('less_equal', np.array([_np.nan]), np.array([_np.nan]))
def _add_workload_logical_and(array_pool):
OpArgMngr.add_workload('logical_and', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('logical_and', np.array([False, False, True, True], dtype=np.bool),
np.array([False, True, False, True], dtype=np.bool))
def _add_workload_logical_or(array_pool):
OpArgMngr.add_workload('logical_or', np.array([0, 1, 2, 4, 2], dtype=np.bool), np.array([-2, 5, 1, 4, 3], dtype=np.bool))
OpArgMngr.add_workload('logical_or', np.array([False, False, True, True], dtype=np.bool),
np.array([False, True, False, True], dtype=np.bool))
def _add_workload_logical_xor(array_pool):
OpArgMngr.add_workload('logical_xor', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32))
OpArgMngr.add_workload('logical_xor', np.array([False, False, True, True], dtype=np.bool),
np.array([False, True, False, True], dtype=np.bool))
def _add_workload_where():
c = np.ones(53).astype(bool)
d = np.ones_like(c)
e = np.zeros_like(c)
OpArgMngr.add_workload('where', c, e, e)
OpArgMngr.add_workload('where', c, d, e)
OpArgMngr.add_workload('where', c, d, e[0])
OpArgMngr.add_workload('where', c, d[0], e)
# OpArgMngr.add_workload('where', c[::2], d[::2], e[::2])
# OpArgMngr.add_workload('where', c[1::2], d[1::2], e[1::2])
# OpArgMngr.add_workload('where', c[::3], d[::3], e[::3])
# OpArgMngr.add_workload('where', c[1::3], d[1::3], e[1::3])
# OpArgMngr.add_workload('where', c[::-2], d[::-2], e[::-2])
# OpArgMngr.add_workload('where', c[::-3], d[::-3], e[::-3])
# OpArgMngr.add_workload('where', c[1::-3], d[1::-3], e[1::-3])
c = np.array([True, False])
a = np.zeros((2, 25))
b = np.ones((2, 25))
OpArgMngr.add_workload('where', c.reshape((2, 1)), a, b)
OpArgMngr.add_workload('where', c, a.T, b.T)
def _add_workload_pad():
array = _np.array([[1, 2, 3], [1, 2, 3]])
pad_width = ((5, 5), (5,5))
array = np.array(array)
OpArgMngr.add_workload('pad', array, pad_width, mode="constant", constant_values=0)
OpArgMngr.add_workload('pad', array, pad_width, mode="edge")
OpArgMngr.add_workload('pad', array, pad_width, mode="symmetric", reflect_type="even")
OpArgMngr.add_workload('pad', array, pad_width, mode="reflect", reflect_type="even")
OpArgMngr.add_workload('pad', array, pad_width, mode="maximum")
OpArgMngr.add_workload('pad', array, pad_width, mode="minimum")
def _add_workload_nonzero():
OpArgMngr.add_workload('nonzero', np.random.randint(0, 2))
OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=()))
OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=(0, 1, 2)))
OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=(0, 1, 0)))
OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=(2, 3, 4)))
OpArgMngr.add_workload('nonzero', np.array([False, False, False], dtype=np.bool_))
OpArgMngr.add_workload('nonzero', np.array([True, False, False], dtype=np.bool_))
def _add_workload_diagflat():
def get_mat(n):
data = _np.arange(n)
data = _np.add.outer(data,data)
return data
A = np.array([[1,2],[3,4],[5,6]])
vals = (100 * np.arange(5)).astype('l')
vals_c = (100 * np.array(get_mat(5)) + 1).astype('l')
vals_f = _np.array((100 * get_mat(5) + 1), order='F', dtype='l')
vals_f = np.array(vals_f)
OpArgMngr.add_workload('diagflat', A, k=2)
OpArgMngr.add_workload('diagflat', A, k=1)
OpArgMngr.add_workload('diagflat', A, k=0)
OpArgMngr.add_workload('diagflat', A, k=-1)
OpArgMngr.add_workload('diagflat', A, k=-2)
OpArgMngr.add_workload('diagflat', A, k=-3)
OpArgMngr.add_workload('diagflat', vals, k=0)
OpArgMngr.add_workload('diagflat', vals, k=2)
OpArgMngr.add_workload('diagflat', vals, k=-2)
OpArgMngr.add_workload('diagflat', vals_c, k=0)
OpArgMngr.add_workload('diagflat', vals_c, k=2)
OpArgMngr.add_workload('diagflat', vals_c, k=-2)
OpArgMngr.add_workload('diagflat', vals_f, k=0)
OpArgMngr.add_workload('diagflat', vals_f, k=2)
OpArgMngr.add_workload('diagflat', vals_f, k=-2)
def _add_workload_shape():
OpArgMngr.add_workload('shape', np.random.uniform(size=()))
OpArgMngr.add_workload('shape', np.random.uniform(size=(0, 1)))
OpArgMngr.add_workload('shape', np.random.uniform(size=(2, 3)))
def _add_workload_diff():
x = np.array([1, 4, 6, 7, 12])
OpArgMngr.add_workload('diff', x)
OpArgMngr.add_workload('diff', x, 2)
OpArgMngr.add_workload('diff', x, 3)
OpArgMngr.add_workload('diff', np.array([1.1, 2.2, 3.0, -0.2, -0.1]))
x = np.zeros((10, 20, 30))
x[:, 1::2, :] = 1
OpArgMngr.add_workload('diff', x)
OpArgMngr.add_workload('diff', x, axis=-1)
OpArgMngr.add_workload('diff', x, axis=0)
OpArgMngr.add_workload('diff', x, axis=1)
OpArgMngr.add_workload('diff', x, axis=-2)
x = 20 * np.random.uniform(size=(10,20,30))
OpArgMngr.add_workload('diff', x)
OpArgMngr.add_workload('diff', x, n=2)
OpArgMngr.add_workload('diff', x, axis=0)
OpArgMngr.add_workload('diff', x, n=2, axis=0)
x = np.array([list(range(3))])
for n in range(1, 5):
OpArgMngr.add_workload('diff', x, n=n)
def _add_workload_ediff1d():
x = np.array([1, 3, 6, 7, 1])
OpArgMngr.add_workload('ediff1d', x)
OpArgMngr.add_workload('ediff1d', x, 2, 4)
OpArgMngr.add_workload('ediff1d', x, x, 3)
OpArgMngr.add_workload('ediff1d', x, x, x)
OpArgMngr.add_workload('ediff1d', np.array([1.1, 2.2, 3.0, -0.2, -0.1]))
x = np.random.randint(5, size=(5, 0, 4))
OpArgMngr.add_workload('ediff1d', x)
OpArgMngr.add_workload('ediff1d', x, 2, 4)
OpArgMngr.add_workload('ediff1d', x, x, 3)
OpArgMngr.add_workload('ediff1d', x, x, x)
def _add_workload_resize():
OpArgMngr.add_workload('resize', np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.int32), (5, 1))
OpArgMngr.add_workload('resize', np.eye(3), 3)
OpArgMngr.add_workload('resize', np.ones(1), ())
OpArgMngr.add_workload('resize', np.ones(()), (1,))
OpArgMngr.add_workload('resize', np.eye(3), (3, 2, 1))
OpArgMngr.add_workload('resize', np.eye(3), (2, 3, 3))
OpArgMngr.add_workload('resize', np.ones(10), 15)
OpArgMngr.add_workload('resize', np.zeros((10, 0)), (0, 10))
OpArgMngr.add_workload('resize', np.zeros((10, 0)), (0, 100))
def _add_workload_empty_like():
OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(1,3,4), dtype='float64'))
OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(9,3,1)), np.int32)
OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(9,3)), 'float32')
OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(9,3,1)), np.bool_)
OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(0,3)), np.float32)
def _add_workload_nan_to_num():
array1 = np.array([[-433, 0, 456, _np.inf], [-1, -_np.inf, 0, 1]])
array2 = np.array([_np.nan, _np.inf, -_np.inf, -574, 0, 23425, 24234,-5])
array3 = np.array(-_np.inf)
OpArgMngr.add_workload('nan_to_num', array1, True, 0, 100, -100)
OpArgMngr.add_workload('nan_to_num', array1, True, 0.00)
OpArgMngr.add_workload('nan_to_num', array2, True)
OpArgMngr.add_workload('nan_to_num', array2, True, -2000, 10000, -10000)
OpArgMngr.add_workload('nan_to_num', array3, True)
def _add_workload_isnan(array_pool):
OpArgMngr.add_workload('isnan', array_pool['2x4'])
def _add_workload_isinf(array_pool):
OpArgMngr.add_workload('isinf', array_pool['2x4'])
def _add_workload_isposinf(array_pool):
OpArgMngr.add_workload('isposinf', array_pool['2x4'])
def _add_workload_isneginf(array_pool):
OpArgMngr.add_workload('isneginf', array_pool['2x4'])
def _add_workload_isfinite(array_pool):
OpArgMngr.add_workload('isfinite', array_pool['2x4'])
def _add_workload_polyval():
p1 = np.arange(20)
p2 = np.arange(1)
x1 = np.arange(20)
x2 = np.ones((3,3))
x3 = np.array(2)
OpArgMngr.add_workload('polyval', p1, x1)
OpArgMngr.add_workload('polyval', p1, x2)
OpArgMngr.add_workload('polyval', p1, x3)
OpArgMngr.add_workload('polyval', p2, x1)
OpArgMngr.add_workload('polyval', p2, x2)
OpArgMngr.add_workload('polyval', p2, x3)
def _add_workload_linalg_cond():
A = np.array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]])
OpArgMngr.add_workload('linalg.cond', A, _np.inf)
OpArgMngr.add_workload('linalg.cond', A, -_np.inf)
OpArgMngr.add_workload('linalg.cond', A, 1)
OpArgMngr.add_workload('linalg.cond', A, -1)
OpArgMngr.add_workload('linalg.cond', A, 'fro')
def _add_workload_linalg_matrix_power():
i = np.array([[0, 1], [-1, 0]])
OpArgMngr.add_workload('linalg.matrix_power', i, 3)
def _add_workload_linalg_matrix_rank():
shapes = [
((4, 3), ()),
((4, 3), (1,)),
((4, 3), (2, 3,)),
((2, 1, 1), (1,)),
((2, 3, 3), (2,)),
((2, 3, 1, 1), ()),
((2, 3, 4, 4), (1, 3)),
((2, 3, 4, 5), (2, 3)),
((2, 3, 5, 4), (2, 3)),
]
dtypes = (np.float32, np.float64)
for dtype in dtypes:
for a_shape, tol_shape in shapes:
for tol_is_none in [True, False]:
a_np = _np.asarray(_np.random.uniform(-10., 10., a_shape))
a = np.array(a_np, dtype=dtype)
if tol_is_none:
OpArgMngr.add_workload('linalg.matrix_rank', a, None, False)
else:
tol_np = _np.random.uniform(10., 20., tol_shape)
tol = np.array(tol_np, dtype=dtype)
OpArgMngr.add_workload('linalg.matrix_rank', a, tol, False)
def _add_workload_linalg_multi_dot():
E = np.ones((4,6,6))
F = np.ones((6,6))
OpArgMngr.add_workload('linalg.multi_dot', E)
OpArgMngr.add_workload('linalg.multi_dot', [F,F])
def _add_workload_heaviside():
x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, _np.nan, _np.inf, -_np.inf]], dtype=np.float64)
OpArgMngr.add_workload('heaviside', x, 0.5)
OpArgMngr.add_workload('heaviside', x, 1.0)
x = x.astype(np.float32)
OpArgMngr.add_workload('heaviside', x, _np.float32(0.5))
OpArgMngr.add_workload('heaviside', x, _np.float32(1.0))
def _add_workload_spacing():
OpArgMngr.add_workload('spacing', _np.float64(1))
OpArgMngr.add_workload('spacing', _np.float32(1))
OpArgMngr.add_workload('spacing', _np.inf)
OpArgMngr.add_workload('spacing', -_np.inf)
OpArgMngr.add_workload('spacing', _np.float64(1e30))
OpArgMngr.add_workload('spacing', _np.float32(1e30))
def _add_workload_allclose():
a = np.random.randn(10)
b = a + np.random.rand(10) * 1e-6
c = [1e10,1e-7]
d = [1.00001e10,1e10,1e-7]
OpArgMngr.add_workload('allclose', a, b)
# OpArgMngr.add_workload('allclose', c, d)
def _add_workload_alltrue():
for i in range(256-7):
e = np.array([True] * 256, dtype=bool)[7::]
e[i] = False
OpArgMngr.add_workload('alltrue', e)
# big array test for blocked libc loops
for i in list(range(9, 6000, 507)) + [7764, 90021, -10]:
e = np.array([True] * 100043, dtype=bool)
e[i] = False
OpArgMngr.add_workload('alltrue', e)
def _add_workload_apply_along_axis():
def double(row):
return row * 2
m = np.array([[0, 1], [2, 3]], dtype=np.int32)
OpArgMngr.add_workload('apply_along_axis', double, 0, m)
OpArgMngr.add_workload('apply_along_axis', double, 1, m)
def _add_workload_apply_over_axes():
a = np.arange(24).reshape(2, 3, 4)
OpArgMngr.add_workload('apply_over_axes', _np.sum, a, [0, 2])
def _add_workload_argpartition():
# TODO: move more test cases from numpy to here
OpArgMngr.add_workload('argpartition', np.array([]), 0, kind='introselect')
OpArgMngr.add_workload('argpartition', np.ones(1), 0, kind='introselect')
for r in ([2, 1], [1, 2], [1, 1], [3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1],
[1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]):
d = np.array(r)
OpArgMngr.add_workload('argpartition', d, 0, kind='introselect')
def _add_workload_argwhere():
a = np.arange(6).reshape((2, 3))
b = np.array([4, 0, 2, 1, 3])
OpArgMngr.add_workload('argwhere', a>1)
OpArgMngr.add_workload('argwhere', b)
def _add_workload_array_equal():
a = np.array([1, 2])
b = np.array([1, 2, 3])
c = np.array([3, 4])
d = np.array([1, 3])
OpArgMngr.add_workload('array_equal', a, a)
OpArgMngr.add_workload('array_equal', a, b)
OpArgMngr.add_workload('array_equal', a, c)
OpArgMngr.add_workload('array_equal', a, d)
def _add_workload_array_equiv():
a = np.array([1, 2])
b = np.array([1, 2, 3])
c = np.array([3, 4])
d = np.array([1, 3])
e = np.array([2])
f = np.array([[1], [2]])
g = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
OpArgMngr.add_workload('array_equiv', a, a)
OpArgMngr.add_workload('array_equiv', a, b)
OpArgMngr.add_workload('array_equiv', a, c)
OpArgMngr.add_workload('array_equiv', a, d)
OpArgMngr.add_workload('array_equiv', a, e)
OpArgMngr.add_workload('array_equiv', a, f)
OpArgMngr.add_workload('array_equiv', a, g)
def _add_workload_choose():
a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=np.int64)
choices = np.array([-10, 10])
OpArgMngr.add_workload('choose', a, choices)
def _add_workload_compress():
a = np.array([[1, 2], [3, 4], [5, 6]])
b = np.array([0, 1])
c = np.array([False, True, True])
d = np.array([False, True])
OpArgMngr.add_workload('compress', b, a, axis=0)
OpArgMngr.add_workload('compress', c, a, axis=0)
OpArgMngr.add_workload('compress', d, a, axis=1)
def _add_workload_corrcoef():
a = np.array([0, 1, 0])
b = np.array([1, 0, 1])
c = np.array(
[[0.15391142, 0.18045767, 0.14197213],
[0.70461506, 0.96474128, 0.27906989],
[0.9297531, 0.32296769, 0.19267156]])
OpArgMngr.add_workload('corrcoef', a, b)
OpArgMngr.add_workload('corrcoef', c)
def _add_workload_correlate():
x = np.array([1, 2, 3, 4, 5])
xs = np.arange(1, 20)[::3]
y = np.array([-1, -2, -3])
OpArgMngr.add_workload('correlate', x, y)
OpArgMngr.add_workload('correlate', x, y, 'full')
OpArgMngr.add_workload('correlate', x, y[:-1], 'full')
OpArgMngr.add_workload('correlate', x[::-1], y, 'full')
OpArgMngr.add_workload('correlate', xs, y, 'full')
OpArgMngr.add_workload('correlate', x, y,"same")
def _add_workload_count_nonzero():
m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]])
a = np.array([])
b = np.eye(3)
OpArgMngr.add_workload('count_nonzero', m, axis=0)
OpArgMngr.add_workload('count_nonzero', m, axis=1)
OpArgMngr.add_workload('count_nonzero', a)
OpArgMngr.add_workload('count_nonzero', b)
def _add_workload_cov():
x = np.array(np.random.rand(12))
y = x.reshape(3, 4)
OpArgMngr.add_workload('cov', x)
OpArgMngr.add_workload('cov', x, rowvar=False)
OpArgMngr.add_workload('cov', x, rowvar=False, bias=True)
OpArgMngr.add_workload('cov', y)
OpArgMngr.add_workload('cov', y, y[::-1])
OpArgMngr.add_workload('cov', y, rowvar=False)
OpArgMngr.add_workload('cov', y, rowvar=False, bias=True)
def _add_workload_cumprod():
a = np.array([[1, 2], [3, 5]])
OpArgMngr.add_workload('cumprod', a)
OpArgMngr.add_workload('cumprod', a, axis=0)
OpArgMngr.add_workload('cumprod', a, axis=1)
def _add_workload_digitize():
a = np.array([1, 2, 3, 4])
b = np.array([1, 3])
c = np.array([0, 1, 2, 3, 4])
e = [1, 3]
OpArgMngr.add_workload('digitize', a, b)
OpArgMngr.add_workload('digitize', b, c)
OpArgMngr.add_workload('digitize', a, e)
def _add_workload_divmod():
a = [0., 1., 2., 3., 4.]
OpArgMngr.add_workload('divmod', a, 3)
def _add_workload_extract():
arr = np.arange(12).reshape((3, 4))
condition = np.array([[ True, False, False, True], # np.mod(arr, 3)==0
[False, False, True, False],
[False, True, False, False]])
OpArgMngr.add_workload('extract', condition, arr)
def _add_workload_flatnonzero(array_pool):
x = np.array([-2, -1, 0, 1, 2])
OpArgMngr.add_workload('flatnonzero', array_pool['4x1'])
OpArgMngr.add_workload('flatnonzero', array_pool['1x2'])
OpArgMngr.add_workload('flatnonzero', x)
def _add_workload_float_power():
x1 = np.array([1, 2, 3, 4, 5, 6])
x2 = np.array([1.0, 2.0, 3.0, 3.0, 2.0, 1.0])
x3 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]])
OpArgMngr.add_workload('float_power', x1, 3)
OpArgMngr.add_workload('float_power', x1, x2)
OpArgMngr.add_workload('float_power', x1, x3)
def _add_workload_frexp():
x = np.arange(9)
OpArgMngr.add_workload('frexp', x)
def _add_workload_histogram2d():
x = np.array([0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891])
y = np.array([0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673])
xedges = np.linspace(0, 1, 10)
yedges = np.linspace(0, 1, 10)
OpArgMngr.add_workload('histogram2d', x, y, (xedges, yedges))
OpArgMngr.add_workload('histogram2d', x, y, xedges)
OpArgMngr.add_workload('histogram2d', list(range(10)), list(range(10)))
def _add_workload_histogram_bin_edges():
a = [1, 2, 3, 4]
b = [1, 2]
arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.])
# OpArgMngr.add_workload('histogram_bin_edges', a, b)
OpArgMngr.add_workload('histogram_bin_edges', arr, bins=30, range=(-0.5, 5))
OpArgMngr.add_workload('histogram_bin_edges', arr, bins='auto', range=(0, 1))
def _add_workload_histogramdd():
x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5],
[.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]])
ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]]
z = [np.squeeze(y) for y in np.split(x, 3, axis=1)]
OpArgMngr.add_workload('histogramdd', x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]])
OpArgMngr.add_workload('histogramdd', x, bins=ed, density=True)
OpArgMngr.add_workload('histogramdd', x, (2, 3, 4), range=[[-1, 1], [0, 3], [0, 4]],
density=True)
OpArgMngr.add_workload('histogramdd', z, bins=(4, 3, 2),
range=[[-2, 2], [0, 3], [0, 2]])
def _add_workload_i0():
a = 0
b = np.array([2, 3, 4])
# OpArgMngr.add_workload('i0', a)
OpArgMngr.add_workload('i0', b)
def _add_workload_in1d():
test = np.array([0, 1, 2, 5, 0])
states = [0, 2]
OpArgMngr.add_workload('in1d', test, states)
OpArgMngr.add_workload('in1d', test, states, invert=True)
def _add_workload_interp():
x = np.linspace(0, 1, 5)
y = np.linspace(0, 1, 5)
x0 = np.linspace(0, 1, 50)
x1 = 0
x2 = .3
x3 = _np.float32(.3)
OpArgMngr.add_workload('interp', x0, x, y)
OpArgMngr.add_workload('interp', x1, x, y)
OpArgMngr.add_workload('interp', x2, x, y)
OpArgMngr.add_workload('interp', x3, x, y)
x = np.array([1, 2, 2.5, 3, 4])
xp = np.array([1, 2, 3, 4])
fp = np.array([1, 2, _np.inf, 4])
OpArgMngr.add_workload('interp', x, xp, fp)
def _add_workload_intersect1d():
a = np.array([5, 7, 1, 2])
b = np.array([2, 4, 3, 1, 5])
c = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]])
d = np.array([[3, 2, 7, 7], [10, 12, 8, 7]])
OpArgMngr.add_workload('intersect1d', a, b, assume_unique=True)
OpArgMngr.add_workload('intersect1d', a, b)
OpArgMngr.add_workload('intersect1d', a, b, assume_unique=True,
return_indices=True)
OpArgMngr.add_workload('intersect1d', c, d)
def _add_workload_isclose():
a = np.array([1e10,1e-7])
b = np.array([1.00001e10,1e-8])
c = np.array([1.0, _np.nan])
d = np.array([0.0, 0.0])
e = np.array([1e-100, 1e-7])
OpArgMngr.add_workload('isclose', a, b)
OpArgMngr.add_workload('isclose', c, c)
OpArgMngr.add_workload('isclose', c, c, equal_nan=True)
OpArgMngr.add_workload('isclose', d, e, atol=0.0)
def _add_workload_isin():
element = 2*np.arange(4).reshape((2, 2))
test_elements = [1, 2, 4, 8]
test_set = {1, 2, 4, 8}
OpArgMngr.add_workload('isin', element, test_elements)
OpArgMngr.add_workload('isin', element, test_elements, invert=True)
OpArgMngr.add_workload('isin', element, list(test_set))
def _add_workload_ix_():
a = np.array([0, 1])
b = np.array([True, True])
c = np.array([2, 4])
d = np.array([False, False, True, False, True])
OpArgMngr.add_workload('ix_', a, c)
OpArgMngr.add_workload('ix_', b, c)
OpArgMngr.add_workload('ix_', b, d)
def _add_workload_lexsort():
a = np.array([1,5,1,4,3,4,4])
b = np.array([9,4,0,4,0,2,1])
OpArgMngr.add_workload('lexsort', (a, b))
def _add_workload_min_scalar_type():
a = 10
OpArgMngr.add_workload('min_scalar_type', a)
def _add_workload_mirr():
val = np.array([-4500, -800, 800, 800, 600, 600, 800, 800, 700, 3000])
OpArgMngr.add_workload('mirr', val, 0.08, 0.055)
def _add_workload_modf():
a = np.array([0, 3.5])
b = -0.5
OpArgMngr.add_workload('modf', a)
OpArgMngr.add_workload('modf', b)
def _add_workload_msort():
A = np.array([[0.44567325, 0.79115165, 0.54900530],
[0.36844147, 0.37325583, 0.96098397],
[0.64864341, 0.52929049, 0.39172155]])
OpArgMngr.add_workload('msort', A)
def _add_workload_nanargmax():
a = np.array([[_np.nan, 4], [2, 3]])
OpArgMngr.add_workload('nanargmax', a)
OpArgMngr.add_workload('nanargmax', a, axis=0)
OpArgMngr.add_workload('nanargmax', a, axis=1)
def _add_workload_nanargmin():
a = np.array([[_np.nan, 4], [2, 3]])
OpArgMngr.add_workload('nanargmin', a)
OpArgMngr.add_workload('nanargmin', a, axis=0)
OpArgMngr.add_workload('nanargmin', a, axis=1)
def _add_workload_nancumprod():
a = np.array([[1, 2], [3, _np.nan]])
OpArgMngr.add_workload('nancumprod', a)
OpArgMngr.add_workload('nancumprod', a, axis=0)
OpArgMngr.add_workload('nancumprod', a, axis=1)
def _add_workload_nancumsum():
a = np.array([[1, 2], [3, _np.nan]])
OpArgMngr.add_workload('nancumsum', a)
OpArgMngr.add_workload('nancumsum', a, axis=0)
OpArgMngr.add_workload('nancumsum', a, axis=1)
def _add_workload_nanmax():
a = np.array([[1, 2], [3, _np.nan]])
OpArgMngr.add_workload('nanmax', a)
OpArgMngr.add_workload('nanmax', a, axis=0)
OpArgMngr.add_workload('nanmax', a, axis=1)
def _add_workload_nanmedian():
a = np.array([[10.0, _np.nan, 4], [3, 2, 1]])
OpArgMngr.add_workload('nanmedian', a)
OpArgMngr.add_workload('nanmedian', a, axis=0)
OpArgMngr.add_workload('nanmedian', a, axis=1)
def _add_workload_nanmin():
a = np.array([[1, 2], [3, _np.nan]])
OpArgMngr.add_workload('nanmin', a)
OpArgMngr.add_workload('nanmin', a, axis=0)
OpArgMngr.add_workload('nanmin', a, axis=1)
def _add_workload_nanpercentile():
a = np.array([[10.0, _np.nan, 4], [3, 2, 1]])
OpArgMngr.add_workload('nanpercentile', a, 50)
OpArgMngr.add_workload('nanpercentile', a, 50, axis=0)
OpArgMngr.add_workload('nanpercentile', a, 50, axis=1)
OpArgMngr.add_workload('nanpercentile', a, 50, axis=1, keepdims=True)
OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='lower')
OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='higher')
OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='midpoint')
OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='nearest')
def _add_workload_nanprod():
a = 1
b = np.array([1, _np.nan])
c = np.array([[1, 2], [3, _np.nan]])
OpArgMngr.add_workload('nanprod', a)
OpArgMngr.add_workload('nanprod', b)
OpArgMngr.add_workload('nanprod', c)
OpArgMngr.add_workload('nanprod', c, axis=0)
def _add_workload_nanquantile():
a = np.array([[10.0, _np.nan, 4], [3, 2, 1]])
OpArgMngr.add_workload('nanquantile', a, 0.4)
OpArgMngr.add_workload('nanquantile', a, 0.4, axis=0)
OpArgMngr.add_workload('nanquantile', a, 0.4, axis=1)
OpArgMngr.add_workload('nanquantile', a, 0.4, axis=1, keepdims=True)
OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='lower')
OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='higher')
OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='midpoint')
OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='nearest')
def _add_workload_nanstd():
OpArgMngr.add_workload('nanstd', np.random.uniform(size=(4, 1)))
A = np.array([[1, 2, 3], [4, _np.nan, 6]])
OpArgMngr.add_workload('nanstd', A)
OpArgMngr.add_workload('nanstd', A, 0)
OpArgMngr.add_workload('nanstd', A, 1)
OpArgMngr.add_workload('nanstd', np.array([1, -1, 1, -1]))
OpArgMngr.add_workload('nanstd', np.array([1, -1, 1, -1]), ddof=1)
OpArgMngr.add_workload('nanstd', np.array([1, -1, 1, -1]), ddof=2)
OpArgMngr.add_workload('nanstd', np.arange(10), out=np.array(0.))
def _add_workload_nansum():
a = 1
b = np.array([1, _np.nan])
c = np.array([[1, 2], [3, _np.nan]])
OpArgMngr.add_workload('nansum', a)
OpArgMngr.add_workload('nansum', b)
OpArgMngr.add_workload('nansum', c)
OpArgMngr.add_workload('nansum', c, axis=0)
def _add_workload_nanvar():
OpArgMngr.add_workload('nanvar', np.random.uniform(size=(4, 1)))
A = np.array([[1, 2, 3], [4, _np.nan, 6]])
OpArgMngr.add_workload('nanvar', A)
OpArgMngr.add_workload('nanvar', A, 0)
OpArgMngr.add_workload('nanvar', A, 1)
OpArgMngr.add_workload('nanvar', np.array([1, -1, 1, -1]))
OpArgMngr.add_workload('nanvar', np.array([1, -1, 1, -1]), ddof=1)
OpArgMngr.add_workload('nanvar', np.array([1, -1, 1, -1]), ddof=2)
OpArgMngr.add_workload('nanvar', np.arange(10), out=np.array(0.))
def _add_workload_ndim():
a = 1
b = np.array([[1,2,3],[4,5,6]])
OpArgMngr.add_workload('ndim', a)
OpArgMngr.add_workload('ndim', b)
def _add_workload_npv():
rate, cashflows = 0.281, np.array([-100, 39, 59, 55, 20])
OpArgMngr.add_workload('npv', rate, cashflows)
def _add_workload_partition():
a = np.array([3, 4, 2, 1])
OpArgMngr.add_workload('partition', a, 3)
OpArgMngr.add_workload('partition', a, (2,3)) #
def _add_workload_piecewise():
a = np.array([0, 0])
b = np.array([1, 0])
c = np.array([1])
x = np.linspace(-2.5, 2.5, 6)
y = np.array([[ True, True, True, False, False, False],
[False, False, False, True, True, True]])
z = np.array([-1, 1])
OpArgMngr.add_workload('piecewise', a, b, c)
OpArgMngr.add_workload('piecewise', x, y, z)
def _add_workload_packbits():
a = np.array([[[1, 0, 1], [0, 1, 0]],
[[1, 1, 0], [0, 0, 1]]], dtype = np.int64)
OpArgMngr.add_workload('packbits', a)
OpArgMngr.add_workload('packbits', a, axis=-1)
OpArgMngr.add_workload('packbits', a, bitorder='little')
def _add_workload_pmt():
OpArgMngr.add_workload('pmt', 0.1 / 12, 1, 60, 55000)
def _add_workload_poly():
a = np.array([3, -np.sqrt(2), np.sqrt(2)])
b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 0]])
OpArgMngr.add_workload('poly', a)
OpArgMngr.add_workload('poly', b)
def _add_workload_polyadd():
a = np.array([1, 2])
b = np.array([9, 5, 4])
OpArgMngr.add_workload('polyadd', a, b)
def _add_workload_polydiv():
x = np.array([3.0, 5.0, 2.0])
y = np.array([2.0, 1.0])
OpArgMngr.add_workload('polydiv', x, y)
def _add_workload_polyfit():
x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0])
y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0])
OpArgMngr.add_workload('polyfit', x, y, 3)
def _add_workload_polyint():
a = np.array([1,2,3])
OpArgMngr.add_workload('polyint', a)
OpArgMngr.add_workload('polyint', a, m=2)
def _add_workload_polymul():
a = np.array([1, 2, 3])
b = np.array([9, 5, 4])
OpArgMngr.add_workload('polymul', a, b)
def _add_workload_polysub():
a = np.array([1, 2, 3])
b = np.array([9, 5, 4])
OpArgMngr.add_workload('polysub', a, b)
def _add_workload_positive(array_pool):
OpArgMngr.add_workload('positive', array_pool['4x1'])
def _add_workload_ppmt():
OpArgMngr.add_workload('ppmt', 0.1 / 12, 1, 60, 55000)
def _add_workload_promote_types():
OpArgMngr.add_workload('promote_types', np.float16, np.float64)
def _add_workload_ptp():
x = np.arange(4).reshape((2,2))
OpArgMngr.add_workload('ptp', x)
OpArgMngr.add_workload('ptp', x, axis=0)
OpArgMngr.add_workload('ptp', x, axis=1)
OpArgMngr.add_workload('ptp', x, keepdims=True)
def _add_workload_pv():
a = np.array((0.05, 0.04, 0.03))/12
OpArgMngr.add_workload('pv', 0.05/12, 10*12, -100, 15692.93)
OpArgMngr.add_workload('pv', a, 10*12, -100, 15692.93)
def _add_workload_rate():
OpArgMngr.add_workload('rate', 10, 0, -3500, 10000)
def _add_workload_real():
a = np.array([1, 3, 5])
b = 2
OpArgMngr.add_workload('real', a)
OpArgMngr.add_workload('real', b)
def _add_workload_real_if_close():
a = np.array([1, 3, 5])
b = 2
OpArgMngr.add_workload('real_if_close', a)
OpArgMngr.add_workload('real_if_close', b)
# OpArgMngr.add_workload('real_if_close', b, tol=1000)
def _add_workload_result_type():
OpArgMngr.add_workload('result_type', 3.0, 2)
def _add_workload_rollaxis():
a = np.ones((3,4,5,6))
OpArgMngr.add_workload('rollaxis', a, 3, 1)
OpArgMngr.add_workload('rollaxis', a, 2)
OpArgMngr.add_workload('rollaxis', a, 1, 4)
def _add_workload_roots():
a = np.array([1,2,1])
OpArgMngr.add_workload('roots', a)
def _add_workload_searchsorted():
a = np.array([1,2,3,4,5])
b = np.array([-10, 10, 2, 3])
OpArgMngr.add_workload('searchsorted', a, 3)
OpArgMngr.add_workload('searchsorted', a, 3, side='right')
OpArgMngr.add_workload('searchsorted', a, b)
def _add_workload_select():
x = np.arange(10)
condlist = np.array([[ True, True, True, False, False,
False, False, False, False, False],
[ False, False, False, False, False,
False, True, True, True, True]], dtype=np.bool)
choicelist = np.array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],
[ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]])
OpArgMngr.add_workload('select', condlist, choicelist)
def _add_workload_setdiff1d():
a = np.array([1, 2, 3, 2, 4, 1])
b = np.array([3, 4, 5, 6])
OpArgMngr.add_workload('setdiff1d', a, b)
def _add_workload_setxor1d():
a = np.array([1, 2, 3, 2, 4])
b = np.array([2, 3, 5, 7, 5])
OpArgMngr.add_workload('setxor1d', a, b)
def _add_workload_signbit():
a = -1.2
b = np.array([1, -2.3, 2.1])
OpArgMngr.add_workload('signbit', a)
OpArgMngr.add_workload('signbit', b)
def _add_workload_size():
a = np.array([[1,2,3],[4,5,6]])
OpArgMngr.add_workload('size', a)
OpArgMngr.add_workload('size', a, 1)
OpArgMngr.add_workload('size', a, 0)
def _add_workload_take_along_axis():
a = np.array([[10, 30, 20], [60, 40, 50]])
ai = np.argsort(a, axis=1)
OpArgMngr.add_workload('take_along_axis', a, ai, axis=1)
def _add_workload_trapz():
a = np.array([1,2,3])
b = np.arange(6).reshape(2, 3)
x = np.array([4,6,8])
OpArgMngr.add_workload('trapz', a)
OpArgMngr.add_workload('trapz', a, x=x)
OpArgMngr.add_workload('trapz', a, dx=2)
OpArgMngr.add_workload('trapz', b, axis=1)
OpArgMngr.add_workload('trapz', b, axis=0)
def _add_workload_tril_indices_from():
for dt in ['float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8']:
OpArgMngr.add_workload('tril_indices_from', np.ones((2, 2), dtype=dt))
arr = np.array([[1, 1, _np.inf],
[1, 1, 1],
[_np.inf, 1, 1]])
OpArgMngr.add_workload('tril_indices_from', arr)
OpArgMngr.add_workload('tril_indices_from', np.zeros((3, 3), dtype=dt))
def _add_workload_trim_zeros():
a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0))
OpArgMngr.add_workload('trim_zeros', a)
OpArgMngr.add_workload('trim_zeros', a, 'b')
def _add_workload_triu_indices_from():
a =np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]])
OpArgMngr.add_workload('triu_indices_from', a, -1)
def _add_workload_union1d():
a = np.array([5, 4, 7, 1, 2])
b = np.array([2, 4, 3, 3, 2, 1, 5])
x = np.array([[0, 1, 2], [3, 4, 5]])
y = np.array([0, 1, 2, 3, 4])
OpArgMngr.add_workload('union1d', a, b)
OpArgMngr.add_workload('union1d', x, y)
def _add_workload_unpackbits():
a = np.array([[2], [7], [23]], dtype=np.uint8)
OpArgMngr.add_workload('unpackbits', a)
OpArgMngr.add_workload('unpackbits', a, axis=1)
def _add_workload_unwrap():
phase = np.linspace(0, np.pi, num=5)
phase[3:] += np.pi
phase_s = np.vstack((phase,phase))
OpArgMngr.add_workload('unwrap', phase)
OpArgMngr.add_workload('unwrap', phase_s, axis=1)
def _add_workload_vander():
x = np.array([1, 2, 3, 5])
OpArgMngr.add_workload('vander', x, 3)
OpArgMngr.add_workload('vander', x, 3, increasing=True)
@use_np
def _prepare_workloads():
array_pool = {
'4x1': np.random.uniform(size=(4, 1)) + 2,
'2x4': np.array([[ -433, float('inf'), 456, _np.inf, _np.nan],
[-_np.inf, float("nan"), -1, 0, _np.inf]]),
'1x2': np.random.uniform(size=(1, 2)) + 2,
'1x1x0': np.array([[[]]])
}
_add_workload_all()
_add_workload_any()
_add_workload_sometrue()
_add_workload_argmin()
_add_workload_argmax()
_add_workload_around()
_add_workload_round()
_add_workload_round_()
_add_workload_argsort()
_add_workload_sort()
_add_workload_append()
_add_workload_bincount()
_add_workload_broadcast_arrays(array_pool)
_add_workload_broadcast_to()
_add_workload_clip()
_add_workload_concatenate(array_pool)
_add_workload_copy()
_add_workload_cross()
_add_workload_cumsum()
_add_workload_ravel()
_add_workload_unravel_index()
_add_workload_diag_indices_from()
_add_workload_diag()
_add_workload_diagonal()
_add_workload_diagflat()
_add_workload_dot()
_add_workload_matmul()
_add_workload_expand_dims()
_add_workload_fix()
_add_workload_flip()
_add_workload_flipud()
_add_workload_fliplr()
_add_workload_max(array_pool)
_add_workload_amax(array_pool)
_add_workload_min(array_pool)
_add_workload_amin(array_pool)
_add_workload_mean(array_pool)
_add_workload_nonzero()
_add_workload_ones_like(array_pool)
_add_workload_atleast_nd()
_add_workload_prod(array_pool)
_add_workload_product(array_pool)
_add_workload_repeat(array_pool)
_add_workload_reshape()
_add_workload_rint(array_pool)
_add_workload_roll()
_add_workload_split()
_add_workload_array_split()
_add_workload_hsplit()
_add_workload_vsplit()
_add_workload_dsplit()
_add_workload_squeeze()
_add_workload_stack(array_pool)
_add_workload_std()
_add_workload_sum()
_add_workload_swapaxes()
_add_workload_take()
_add_workload_tensordot()
_add_workload_tile()
_add_workload_transpose()
_add_workload_unique()
_add_workload_delete()
_add_workload_var(array_pool)
_add_workload_zeros_like(array_pool)
_add_workload_linalg_norm()
_add_workload_linalg_cholesky()
_add_workload_linalg_qr()
_add_workload_linalg_inv()
_add_workload_linalg_solve()
_add_workload_linalg_det()
_add_workload_linalg_tensorinv()
_add_workload_linalg_tensorsolve()
_add_workload_linalg_lstsq()
_add_workload_linalg_pinv()
_add_workload_linalg_eigvals()
_add_workload_linalg_eig()
_add_workload_linalg_eigvalsh()
_add_workload_linalg_eigh()
_add_workload_linalg_slogdet()
_add_workload_linalg_cond()
_add_workload_linalg_matrix_power()
_add_workload_linalg_matrix_rank()
_add_workload_linalg_multi_dot()
_add_workload_trace()
_add_workload_tril()
_add_workload_triu()
_add_workload_outer()
_add_workload_kron()
_add_workload_meshgrid()
_add_workload_einsum()
_add_workload_abs()
_add_workload_fabs()
_add_workload_add(array_pool)
_add_workload_arctan2()
_add_workload_copysign()
_add_workload_degrees()
_add_workload_true_divide()
_add_workload_inner()
_add_workload_insert()
_add_workload_interp()
_add_workload_hypot()
_add_workload_lcm()
_add_workload_gcd()
_add_workload_bitwise_and()
_add_workload_bitwise_xor()
_add_workload_bitwise_or()
_add_workload_bitwise_left_shift()
_add_workload_bitwise_right_shift()
_add_workload_ldexp()
_add_workload_logaddexp(array_pool)
_add_workload_subtract(array_pool)
_add_workload_multiply(array_pool)
_add_workload_power(array_pool)
_add_workload_mod(array_pool)
_add_workload_fmod(array_pool)
_add_workload_floor_divide(array_pool)
_add_workload_remainder()
_add_workload_maximum(array_pool)
_add_workload_fmax(array_pool)
_add_workload_minimum(array_pool)
_add_workload_fmin(array_pool)
_add_workload_negative(array_pool)
_add_workload_absolute(array_pool)
_add_workload_sign(array_pool)
_add_workload_exp(array_pool)
_add_workload_log(array_pool)
_add_workload_log2(array_pool)
_add_workload_log1p()
_add_workload_log10(array_pool)
_add_workload_expm1()
_add_workload_sqrt()
_add_workload_square()
_add_workload_cbrt()
_add_workload_reciprocal()
_add_workload_sin(array_pool)
_add_workload_cos(array_pool)
_add_workload_tan(array_pool)
_add_workload_sinh(array_pool)
_add_workload_cosh(array_pool)
_add_workload_tanh(array_pool)
_add_workload_arcsin(array_pool)
_add_workload_arccos(array_pool)
_add_workload_arctan(array_pool)
_add_workload_arcsinh(array_pool)
_add_workload_arccosh(array_pool)
_add_workload_arctanh(array_pool)
_add_workload_ceil(array_pool)
_add_workload_turnc(array_pool)
_add_workload_floor(array_pool)
_add_workload_logical_not(array_pool)
_add_workload_bitwise_not()
_add_workload_invert()
_add_workload_vdot()
_add_workload_vstack(array_pool)
_add_workload_column_stack()
_add_workload_hstack(array_pool)
_add_workload_dstack(array_pool)
_add_workload_equal(array_pool)
_add_workload_not_equal(array_pool)
_add_workload_greater(array_pool)
_add_workload_greater_equal(array_pool)
_add_workload_less(array_pool)
_add_workload_less_equal(array_pool)
_add_workload_logical_and(array_pool)
_add_workload_logical_or(array_pool)
_add_workload_logical_xor(array_pool)
_add_workload_where()
_add_workload_shape()
_add_workload_diff()
_add_workload_ediff1d()
_add_workload_quantile()
_add_workload_median(array_pool)
_add_workload_percentile()
_add_workload_resize()
_add_workload_full_like(array_pool)
_add_workload_empty_like()
_add_workload_nan_to_num()
_add_workload_polyval()
_add_workload_isnan(array_pool)
_add_workload_isinf(array_pool)
_add_workload_isposinf(array_pool)
_add_workload_isneginf(array_pool)
_add_workload_isfinite(array_pool)
_add_workload_heaviside()
_add_workload_spacing()
_add_workload_allclose()
_add_workload_alltrue()
_add_workload_apply_along_axis()
_add_workload_apply_over_axes()
_add_workload_argpartition()
_add_workload_argwhere()
_add_workload_array_equal()
_add_workload_array_equiv()
_add_workload_choose()
_add_workload_compress()
_add_workload_corrcoef()
_add_workload_correlate()
_add_workload_count_nonzero()
_add_workload_cov()
_add_workload_cumprod()
_add_workload_digitize()
_add_workload_divmod()
_add_workload_extract()
_add_workload_flatnonzero(array_pool)
_add_workload_float_power()
_add_workload_frexp()
_add_workload_histogram2d()
_add_workload_histogram_bin_edges()
_add_workload_histogramdd()
_add_workload_i0()
_add_workload_in1d()
_add_workload_interp()
_add_workload_intersect1d()
_add_workload_isclose()
_add_workload_isin()
_add_workload_ix_()
_add_workload_lexsort()
_add_workload_min_scalar_type()
_add_workload_mirr()
_add_workload_modf()
_add_workload_msort()
_add_workload_nanargmax()
_add_workload_nanargmin()
_add_workload_nancumprod()
_add_workload_nancumsum()
_add_workload_nanmax()
_add_workload_nanmedian()
_add_workload_nanmin()
_add_workload_nanpercentile()
_add_workload_nanprod()
_add_workload_nanquantile()
_add_workload_nanstd()
_add_workload_nansum()
_add_workload_nanvar()
_add_workload_ndim()
_add_workload_npv()
_add_workload_packbits()
_add_workload_pad()
_add_workload_partition()
_add_workload_piecewise()
_add_workload_pmt()
_add_workload_poly()
_add_workload_polyadd()
_add_workload_polydiv()
_add_workload_polyfit()
_add_workload_polyint()
_add_workload_polymul()
_add_workload_polysub()
_add_workload_positive(array_pool)
_add_workload_ppmt()
_add_workload_promote_types()
_add_workload_ptp()
_add_workload_pv()
_add_workload_rate()
_add_workload_real()
_add_workload_real_if_close()
_add_workload_result_type()
_add_workload_rollaxis()
_add_workload_roots()
_add_workload_searchsorted()
_add_workload_select()
_add_workload_setdiff1d()
_add_workload_setxor1d()
_add_workload_signbit()
_add_workload_size()
_add_workload_take_along_axis()
_add_workload_trapz()
_add_workload_tril_indices_from()
_add_workload_trim_zeros()
_add_workload_triu_indices_from()
_add_workload_union1d()
_add_workload_unpackbits()
_add_workload_unwrap()
_add_workload_vander()
def _get_numpy_op_output(onp_op, *args, **kwargs):
onp_args = [arg.asnumpy() if isinstance(arg, np.ndarray) else arg for arg in args]
onp_kwargs = {k: v.asnumpy() if isinstance(v, np.ndarray) else v for k, v in kwargs.items()}
for i, v in enumerate(onp_args):
if isinstance(v, (list, tuple)):
new_arrs = [a.asnumpy() if isinstance(a, np.ndarray) else a for a in v]
onp_args[i] = new_arrs
return onp_op(*onp_args, **onp_kwargs)
def _check_interoperability_helper(op_name, rel_tol, abs_tol, *args, **kwargs):
strs = op_name.split('.')
if len(strs) == 1:
onp_op = getattr(_np, op_name)
mxnp_op = getattr(np, op_name)
elif len(strs) == 2:
onp_op = getattr(getattr(_np, strs[0]), strs[1])
mxnp_op = getattr(getattr(np, strs[0]), strs[1])
else:
assert False
if not is_op_runnable():
return
out = mxnp_op(*args, **kwargs)
expected_out = _get_numpy_op_output(onp_op, *args, **kwargs)
if isinstance(out, (tuple, list)):
assert type(out) == type(expected_out)
for arr, expected_arr in zip(out, expected_out):
if isinstance(arr, np.ndarray):
assert_almost_equal(arr.asnumpy(), expected_arr, rtol=rel_tol, atol=abs_tol, use_broadcast=False, equal_nan=True)
else:
_np.testing.assert_equal(arr, expected_arr)
elif isinstance(out, np.ndarray):
assert_almost_equal(out.asnumpy(), expected_out, rtol=rel_tol, atol=abs_tol, use_broadcast=False, equal_nan=True)
elif isinstance(out, _np.dtype):
_np.testing.assert_equal(out, expected_out)
else:
assert _np.isscalar(out), "{} is not a scalar type".format(str(type(out)))
if isinstance(out, _np.float):
_np.testing.assert_almost_equal(out, expected_out)
else:
_np.testing.assert_equal(out, expected_out)
def check_interoperability(op_list):
OpArgMngr.randomize_workloads()
for name in op_list:
if name in _TVM_OPS and not is_op_runnable():
continue
if name in ['shares_memory', 'may_share_memory', 'empty_like',
'__version__', 'dtype', '_NoValue']: # skip list
continue
if name in ['full_like', 'zeros_like', 'ones_like'] and \
StrictVersion(platform.python_version()) < StrictVersion('3.0.0'):
continue
default_tols = (1e-3, 1e-4)
tols = {'linalg.tensorinv': (1e-2, 5e-3),
'linalg.solve': (1e-3, 5e-2)}
(rel_tol, abs_tol) = tols.get(name, default_tols)
print('Dispatch test:', name)
workloads = OpArgMngr.get_workloads(name)
assert workloads is not None, 'Workloads for operator `{}` has not been ' \
'added for checking interoperability with ' \
'the official NumPy.'.format(name)
for workload in workloads:
_check_interoperability_helper(name, rel_tol, abs_tol, *workload['args'], **workload['kwargs'])
@use_np
@with_array_function_protocol
@pytest.mark.serial
def test_np_memory_array_function():
ops = [_np.shares_memory, _np.may_share_memory]
for op in ops:
data_mx = np.zeros([13, 21, 23, 22], dtype=np.float32)
data_np = _np.zeros([13, 21, 23, 22], dtype=np.float32)
assert op(data_mx[0,:,:,:], data_mx[1,:,:,:]) == op(data_np[0,:,:,:], data_np[1,:,:,:])
assert op(data_mx[0,0,0,2:5], data_mx[0,0,0,4:7]) == op(data_np[0,0,0,2:5], data_np[0,0,0,4:7])
assert op(data_mx, np.ones((5, 0))) == op(data_np, _np.ones((5, 0)))
@use_np
@with_array_function_protocol
@pytest.mark.serial
def test_np_array_function_protocol():
check_interoperability(_NUMPY_ARRAY_FUNCTION_LIST)
@use_np
@with_array_ufunc_protocol
@pytest.mark.serial
def test_np_array_ufunc_protocol():
prev_state = util.set_flush_denorms(False)
try:
check_interoperability(_NUMPY_ARRAY_UFUNC_LIST)
finally:
util.set_flush_denorms(prev_state)
@use_np
@pytest.mark.serial
def test_np_fallback_ops():
op_list = np.fallback.__all__ + ['linalg.{}'.format(op_name) for op_name in np.fallback_linalg.__all__]
check_interoperability(op_list)