| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| |
| # pylint: skip-file |
| from __future__ import absolute_import |
| from __future__ import division |
| from distutils.version import StrictVersion |
| import sys |
| import platform |
| import itertools |
| import numpy as _np |
| import unittest |
| import pytest |
| from mxnet import np, util |
| from mxnet.test_utils import assert_almost_equal |
| from mxnet.test_utils import use_np |
| from mxnet.test_utils import is_op_runnable |
| from common import assertRaises, random_seed |
| from mxnet.numpy_dispatch_protocol import with_array_function_protocol, with_array_ufunc_protocol |
| from mxnet.numpy_dispatch_protocol import _NUMPY_ARRAY_FUNCTION_LIST, _NUMPY_ARRAY_UFUNC_LIST |
| |
| |
| _INT_DTYPES = [np.int8, np.int32, np.int64, np.uint8] |
| _FLOAT_DTYPES = [np.float16, np.float32, np.float64] |
| _DTYPES = _INT_DTYPES + _FLOAT_DTYPES |
| _TVM_OPS = [ |
| 'equal', |
| 'not_equal', |
| 'less', |
| 'less_equal', |
| 'greater', |
| 'greater_equal', |
| 'logical_and', |
| 'logical_or', |
| 'logical_xor', |
| ] |
| |
| |
| class OpArgMngr(object): |
| """Operator argument manager for storing operator workloads.""" |
| _args = {} |
| |
| @staticmethod |
| def add_workload(name, *args, **kwargs): |
| if name not in OpArgMngr._args: |
| OpArgMngr._args[name] = [] |
| OpArgMngr._args[name].append({'args': args, 'kwargs': kwargs}) |
| |
| @staticmethod |
| def get_workloads(name): |
| if OpArgMngr._args == {}: |
| _prepare_workloads() |
| return OpArgMngr._args.get(name, None) |
| |
| @staticmethod |
| def randomize_workloads(): |
| # Force a new _prepare_workloads(), which will be based on new random numbers |
| OpArgMngr._args = {} |
| |
| |
| def _add_workload_all(): |
| # check bad element in all positions |
| for i in range(256-7): |
| e = np.array([True] * 256, dtype=bool)[7::] |
| e[i] = False |
| OpArgMngr.add_workload('all', e) |
| # big array test for blocked libc loops |
| for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: |
| e = np.array([True] * 100043, dtype=bool) |
| e[i] = False |
| OpArgMngr.add_workload('all', e) |
| |
| |
| def _add_workload_any(): |
| # check bad element in all positions |
| for i in range(256-7): |
| d = np.array([False] * 256, dtype=bool)[7::] |
| d[i] = True |
| OpArgMngr.add_workload('any', d) |
| # big array test for blocked libc loops |
| for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: |
| d = np.array([False] * 100043, dtype=bool) |
| d[i] = True |
| OpArgMngr.add_workload('any', d) |
| |
| |
| def _add_workload_sometrue(): |
| # check bad element in all positions |
| for i in range(256-7): |
| d = np.array([False] * 256, dtype=bool)[7::] |
| d[i] = True |
| OpArgMngr.add_workload('sometrue', d) |
| # big array test for blocked libc loops |
| for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: |
| d = np.array([False] * 100043, dtype=bool) |
| d[i] = True |
| OpArgMngr.add_workload('sometrue', d) |
| |
| |
| def _add_workload_unravel_index(): |
| OpArgMngr.add_workload('unravel_index', indices=np.array([2],dtype=_np.int64), shape=(2, 2)) |
| OpArgMngr.add_workload('unravel_index', np.array([(2*3 + 1)*6 + 4], dtype=_np.int64), (4, 3, 6)) |
| OpArgMngr.add_workload('unravel_index', np.array([22, 41, 37], dtype=_np.int32), (7, 6)) |
| OpArgMngr.add_workload('unravel_index', np.array([1621],dtype=_np.uint8), (6, 7, 8, 9)) |
| OpArgMngr.add_workload('unravel_index', np.array([],dtype=_np.int64), (10, 3, 5)) |
| OpArgMngr.add_workload('unravel_index', np.array([3], dtype=_np.int32), (2,2)) |
| |
| |
| def _add_workload_diag_indices_from(): |
| a = np.random.uniform(-4, 4, size=(4,4)) |
| OpArgMngr.add_workload('diag_indices_from', a) |
| |
| |
| def _add_workload_bincount(): |
| y = np.arange(4).astype(int) |
| y1 = np.array([1, 5, 2, 4, 1], dtype=_np.int64) |
| y2 = np.array((), dtype=_np.int8) |
| w = np.array([0.2, 0.3, 0.5, 0.1]) |
| w1 = np.array([0.2, 0.3, 0.5, 0.1, 0.2]) |
| |
| OpArgMngr.add_workload('bincount', y) |
| OpArgMngr.add_workload('bincount', y1) |
| OpArgMngr.add_workload('bincount', y, w) |
| OpArgMngr.add_workload('bincount', y1, w1) |
| OpArgMngr.add_workload('bincount', y1, w1, 8) |
| OpArgMngr.add_workload('bincount', y, minlength=3) |
| OpArgMngr.add_workload('bincount', y, minlength=8) |
| OpArgMngr.add_workload('bincount', y2, minlength=0) |
| OpArgMngr.add_workload('bincount', y2, minlength=5) |
| |
| |
| def _add_workload_cross(): |
| shapes = [ |
| # (a_shape, b_shape, (a_axis, b_axis, c_axis)) |
| ((2,), (2,), (-1, -1, -1)), |
| ((1, 2), (1, 2), (-1, -1, -1)), |
| ((2, 5, 4, 3), (5, 2, 4, 3), (0, 1, 2)), |
| ((2, 5, 1, 3), (1, 2, 4, 3), (0, 1, 2)), |
| |
| ((2,), (3,), (-1, -1, -1)), |
| ((1, 2,), (1, 3,), (-1, -1, -1)), |
| ((6, 2, 5, 4), (6, 5, 3, 4), (1, 2, 0)), |
| ((6, 2, 1, 4), (1, 5, 3, 4), (1, 2, 0)), |
| |
| ((3,), (2,), (-1, -1, -1)), |
| ((1, 3,), (1, 2,), (-1, -1, -1)), |
| ((6, 3, 5, 4), (6, 5, 2, 4), (1, 2, 0)), |
| ((6, 3, 1, 4), (1, 5, 2, 4), (1, 2, 0)), |
| |
| ((3,), (3,), (-1, -1, -1)), |
| ((1, 3,), (1, 3,), (-1, -1, -1)), |
| ((6, 3, 5, 4), (6, 5, 3, 4), (1, 2, 0)), |
| ((6, 3, 1, 4), (1, 5, 3, 4), (1, 2, 0)), |
| ] |
| dtypes = [np.float32, np.float64] |
| for shape, dtype in itertools.product(shapes, dtypes): |
| a_shape, b_shape, (a_axis, b_axis, c_axis) = shape |
| a_np = _np.random.uniform(-10., 10., size=a_shape) |
| b_np = _np.random.uniform(-10., 10., size=b_shape) |
| a = np.array(a_np, dtype=dtype) |
| b = np.array(b_np, dtype=dtype) |
| OpArgMngr.add_workload('cross', a, b, axisa=a_axis, axisb=b_axis, axisc=c_axis) |
| |
| |
| def _add_workload_diag(): |
| def get_mat(n): |
| data = _np.arange(n) |
| data = _np.add.outer(data, data) |
| return data |
| |
| A = np.array([[1, 2], [3, 4], [5, 6]]) |
| vals = (100 * np.arange(5)).astype('l') |
| vals_c = (100 * np.array(get_mat(5)) + 1).astype('l') |
| vals_f = _np.array((100 * get_mat(5) + 1), order='F', dtype='l') |
| vals_f = np.array(vals_f) |
| |
| OpArgMngr.add_workload('diag', A, k=2) |
| OpArgMngr.add_workload('diag', A, k=1) |
| OpArgMngr.add_workload('diag', A, k=0) |
| OpArgMngr.add_workload('diag', A, k=-1) |
| OpArgMngr.add_workload('diag', A, k=-2) |
| OpArgMngr.add_workload('diag', A, k=-3) |
| OpArgMngr.add_workload('diag', vals, k=0) |
| OpArgMngr.add_workload('diag', vals, k=2) |
| OpArgMngr.add_workload('diag', vals, k=-2) |
| OpArgMngr.add_workload('diag', vals_c, k=0) |
| OpArgMngr.add_workload('diag', vals_c, k=2) |
| OpArgMngr.add_workload('diag', vals_c, k=-2) |
| OpArgMngr.add_workload('diag', vals_f, k=0) |
| OpArgMngr.add_workload('diag', vals_f, k=2) |
| OpArgMngr.add_workload('diag', vals_f, k=-2) |
| |
| |
| def _add_workload_diagonal(): |
| A = np.arange(12).reshape((3, 4)) |
| B = np.arange(8).reshape((2,2,2)) |
| |
| OpArgMngr.add_workload('diagonal', A) |
| OpArgMngr.add_workload('diagonal', A, offset=0) |
| OpArgMngr.add_workload('diagonal', A, offset=-1) |
| OpArgMngr.add_workload('diagonal', A, offset=1) |
| OpArgMngr.add_workload('diagonal', B, offset=0) |
| OpArgMngr.add_workload('diagonal', B, offset=1) |
| OpArgMngr.add_workload('diagonal', B, offset=-1) |
| OpArgMngr.add_workload('diagonal', B, 0, 1, 2) |
| OpArgMngr.add_workload('diagonal', B, 0, 0, 1) |
| OpArgMngr.add_workload('diagonal', B, offset=1, axis1=0, axis2=2) |
| OpArgMngr.add_workload('diagonal', B, 0, 2, 1) |
| |
| |
| def _add_workload_median(array_pool): |
| OpArgMngr.add_workload('median', array_pool['4x1']) |
| OpArgMngr.add_workload('median', array_pool['4x1'], axis=0, keepdims=True) |
| OpArgMngr.add_workload('median', np.array([[1, 2, 3], [4, 5, 6]])) |
| OpArgMngr.add_workload('median', np.array([[1, 2, 3], [4, 5, 6]]), axis=0) |
| OpArgMngr.add_workload('median', np.array([[1, 2, 3], [4, 5, 6]]), axis=1) |
| |
| |
| def _add_workload_quantile(): |
| x1 = np.arange(8) * 0.5 |
| x2 = np.arange(100.) |
| q1 = np.array(0) |
| q2 = np.array(1) |
| q3 = np.array(0.5) |
| q4 = np.array([0, 0.75, 0.25, 0.5, 1.0]) |
| q5 = 0.4 |
| |
| OpArgMngr.add_workload('quantile', x1, q1) |
| OpArgMngr.add_workload('quantile', x1, q2) |
| OpArgMngr.add_workload('quantile', x1, q3) |
| OpArgMngr.add_workload('quantile', x2, q4, interpolation="midpoint") |
| OpArgMngr.add_workload('quantile', x2, q4, interpolation="nearest") |
| OpArgMngr.add_workload('quantile', x2, q4, interpolation="lower") |
| OpArgMngr.add_workload('quantile', x2, q5, interpolation="midpoint") |
| OpArgMngr.add_workload('quantile', x2, q5, interpolation="nearest") |
| OpArgMngr.add_workload('quantile', x2, q5, interpolation="lower") |
| |
| |
| def _add_workload_percentile(): |
| x1 = np.ones(5) |
| q1 = np.array(5) |
| x2 = np.array([[1, 1, 1], |
| [1, 1, 1], |
| [4, 4, 3], |
| [1, 1, 1], |
| [1, 1, 1]]) |
| q2 = np.array(60) |
| x3 = np.arange(10) |
| q3 = np.array([25, 50, 100]) |
| q4 = 65 |
| x4 = np.arange(11 * 2).reshape(11, 1, 2, 1) |
| x5 = np.array([0, _np.nan]) |
| |
| OpArgMngr.add_workload('percentile', x1, q1, None, None, None) |
| OpArgMngr.add_workload('percentile', x1, q1, None, None, None, 'linear') |
| OpArgMngr.add_workload('percentile', x2, q2, axis=0) |
| OpArgMngr.add_workload('percentile', x3, q2, interpolation='linear') |
| OpArgMngr.add_workload('percentile', x3, q2, interpolation='lower') |
| OpArgMngr.add_workload('percentile', x3, q2, interpolation='higher') |
| OpArgMngr.add_workload('percentile', x3, q2, interpolation='midpoint') |
| OpArgMngr.add_workload('percentile', x3, q2, interpolation='nearest') |
| OpArgMngr.add_workload('percentile', x3, q3) |
| OpArgMngr.add_workload('percentile', x4, q2, axis=0) |
| OpArgMngr.add_workload('percentile', x4, q2, axis=1) |
| OpArgMngr.add_workload('percentile', x4, q4, axis=2) |
| OpArgMngr.add_workload('percentile', x4, q4, axis=3) |
| OpArgMngr.add_workload('percentile', x4, q2, axis=-1) |
| OpArgMngr.add_workload('percentile', x4, q2, axis=-2) |
| OpArgMngr.add_workload('percentile', x4, q4, axis=-3) |
| OpArgMngr.add_workload('percentile', x4, q4, axis=-4) |
| OpArgMngr.add_workload('percentile', x4, q2, axis=(1,2)) |
| OpArgMngr.add_workload('percentile', x4, q3, axis=(-2,-1)) |
| OpArgMngr.add_workload('percentile', x4, q2, axis=(1,2), keepdims=True) |
| OpArgMngr.add_workload('percentile', x5, q2) |
| OpArgMngr.add_workload('percentile', x5, q3) |
| |
| |
| def _add_workload_concatenate(array_pool): |
| OpArgMngr.add_workload('concatenate', [array_pool['4x1'], array_pool['4x1']]) |
| OpArgMngr.add_workload('concatenate', [array_pool['4x1'], array_pool['4x1']], axis=1) |
| OpArgMngr.add_workload('concatenate', [np.random.uniform(size=(3, 3))]) |
| OpArgMngr.add_workload('concatenate', (np.arange(4).reshape((2, 2)), np.arange(4).reshape((2, 2)))) |
| OpArgMngr.add_workload('concatenate', (np.arange(4),)) |
| OpArgMngr.add_workload('concatenate', (np.array(np.arange(4)),)) |
| OpArgMngr.add_workload('concatenate', (np.arange(4), np.arange(3))) |
| OpArgMngr.add_workload('concatenate', (np.array(np.arange(4)), np.arange(3))) |
| OpArgMngr.add_workload('concatenate', (np.arange(4), np.arange(3)), axis=0) |
| OpArgMngr.add_workload('concatenate', (np.arange(4), np.arange(3)), axis=-1) |
| a23 = np.random.uniform(size=(2, 3)) |
| a13 = np.random.uniform(size=(1, 3)) |
| OpArgMngr.add_workload('concatenate', (a23, a13)) |
| OpArgMngr.add_workload('concatenate', (a23, a13), axis=0) |
| OpArgMngr.add_workload('concatenate', (a23.T, a13.T), axis=1) |
| OpArgMngr.add_workload('concatenate', (a23.T, a13.T), axis=-1) |
| res = np.arange(2*3*7).reshape((2, 3, 7)) |
| a0 = res[..., :4] |
| a1 = res[..., 4:6] |
| a2 = res[..., 6:] |
| OpArgMngr.add_workload('concatenate', (a0, a1, a2), axis=2) |
| OpArgMngr.add_workload('concatenate', (a0, a1, a2), axis=-1) |
| OpArgMngr.add_workload('concatenate', (a0.T, a1.T, a2.T), axis=0) |
| out = np.empty(4, dtype=np.float32) |
| OpArgMngr.add_workload('concatenate', (np.array([1, 2]), np.array([3, 4])), out=out) |
| OpArgMngr.add_workload('concatenate', [array_pool['4x1'], array_pool['4x1']], axis=None) |
| OpArgMngr.add_workload('concatenate', (np.arange(4).reshape((2, 2)), np.arange(4).reshape((2, 2))), axis=None) |
| OpArgMngr.add_workload('concatenate', (a23, a13), axis=None) |
| |
| |
| def _add_workload_append(): |
| |
| def get_new_shape(shape, axis): |
| shape_lst = list(shape) |
| if axis is not None: |
| shape_lst[axis] = _np.random.randint(0, 3) |
| return tuple(shape_lst) |
| |
| for shape in [(0, 0), (2, 3), (2, 1, 3)]: |
| for axis in [0, 1, None]: |
| a = np.random.uniform(-1.0, 1.0, size=get_new_shape(shape, axis)) |
| b = np.random.uniform(-1.0, 1.0, size=get_new_shape(shape, axis)) |
| OpArgMngr.add_workload('append', a, b, axis=axis) |
| |
| OpArgMngr.add_workload('append', np.array([]), np.array([])) |
| |
| |
| def _add_workload_copy(): |
| OpArgMngr.add_workload('copy', np.random.uniform(size=(4, 1))) |
| OpArgMngr.add_workload('copy', np.random.uniform(size=(2, 2))) |
| OpArgMngr.add_workload('copy', np.random.uniform(size=(2,2))) |
| |
| |
| def _add_workload_expand_dims(): |
| OpArgMngr.add_workload('expand_dims', np.random.uniform(size=(4, 1)), -1) |
| OpArgMngr.add_workload('expand_dims', np.random.uniform(size=(4, 1)) > 0.5, -1) |
| for axis in range(-5, 4): |
| OpArgMngr.add_workload('expand_dims', np.empty((2, 3, 4, 5)), axis) |
| |
| |
| def _add_workload_split(): |
| OpArgMngr.add_workload('split', np.random.uniform(size=(4, 1)), 2) |
| OpArgMngr.add_workload('split', np.arange(10), 2) |
| OpArgMngr.add_workload('split', np.random.uniform(size=(10, 10, 3)), 3, -1) |
| assertRaises(ValueError, np.split, np.arange(10), 3) |
| |
| |
| def _add_workload_array_split(): |
| a = np.arange(10) |
| b = np.array([np.arange(10), np.arange(10)]) |
| |
| for i in range(1, 12): |
| OpArgMngr.add_workload('array_split', a, i) |
| OpArgMngr.add_workload('array_split', b, 3, axis=0) |
| OpArgMngr.add_workload('array_split', b, [0, 1, 2], axis=0) |
| OpArgMngr.add_workload('array_split', b, 3, axis=-1) |
| OpArgMngr.add_workload('array_split', b, 3) |
| |
| |
| def _add_workload_hsplit(): |
| a = np.array([1, 2, 3, 4]) |
| OpArgMngr.add_workload('hsplit', a, 2) |
| b = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) |
| OpArgMngr.add_workload('hsplit', b, 2) |
| |
| |
| def _add_workload_vsplit(): |
| assertRaises(ValueError, np.vsplit, np.array([1, 2, 3, 4]), 2) |
| a = np.array([[1, 2, 3, 4], [1, 2, 3, 4]]) |
| OpArgMngr.add_workload('vsplit', a, 2) |
| assertRaises(ValueError, np.vsplit, np.array(1), 2) |
| |
| |
| def _add_workload_dsplit(): |
| a = np.array([[[1, 2, 3, 4], [1, 2, 3, 4]], |
| [[1, 2, 3, 4], [1, 2, 3, 4]]]) |
| OpArgMngr.add_workload('dsplit', a, 2) |
| assertRaises(ValueError, np.dsplit, np.array(1), 2) |
| assertRaises(ValueError, np.dsplit, np.array([1, 2, 3, 4]), 2) |
| assertRaises(ValueError, np.dsplit, np.array([[1, 2, 3, 4], [1, 2, 3, 4]]), 2) |
| |
| |
| def _add_workload_squeeze(): |
| OpArgMngr.add_workload('squeeze', np.random.uniform(size=(4, 1))) |
| OpArgMngr.add_workload('squeeze', np.random.uniform(size=(20, 10, 10, 1, 1))) |
| OpArgMngr.add_workload('squeeze', np.random.uniform(size=(20, 1, 10, 1, 20))) |
| OpArgMngr.add_workload('squeeze', np.random.uniform(size=(1, 1, 20, 10))) |
| OpArgMngr.add_workload('squeeze', np.array([[[1.5]]])) |
| |
| |
| def _add_workload_std(): |
| OpArgMngr.add_workload('std', np.random.uniform(size=(4, 1))) |
| A = np.array([[1, 2, 3], [4, 5, 6]]) |
| OpArgMngr.add_workload('std', A) |
| OpArgMngr.add_workload('std', A, 0) |
| OpArgMngr.add_workload('std', A, 1) |
| OpArgMngr.add_workload('std', np.array([1, -1, 1, -1])) |
| OpArgMngr.add_workload('std', np.array([1, -1, 1, -1]), ddof=1) |
| OpArgMngr.add_workload('std', np.array([1, -1, 1, -1]), ddof=2) |
| OpArgMngr.add_workload('std', np.arange(10), out=np.array(0.)) |
| |
| |
| def _add_workload_swapaxes(): |
| OpArgMngr.add_workload('swapaxes', np.random.uniform(size=(4, 1)), 0, 1) |
| OpArgMngr.add_workload('swapaxes', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 0, 2) |
| a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() |
| b = a.copy() |
| # no AxisError defined in mxnet numpy |
| # assertRaises(np.AxisError, np.swapaxes, -5, 0) |
| for i in range(-4, 4): |
| for j in range(-4, 4): |
| for src in (a, b): |
| OpArgMngr.add_workload('swapaxes', src, i, j) |
| |
| |
| def _add_workload_tensordot(): |
| OpArgMngr.add_workload('tensordot', np.random.uniform(size=(4, 1)), np.random.uniform(size=(4, 1))) |
| OpArgMngr.add_workload('tensordot', np.random.uniform(size=(3, 0)), np.random.uniform(size=(0, 4)), (1, 0)) |
| OpArgMngr.add_workload('tensordot', np.array(1), np.array(1), ([], [])) |
| |
| |
| def _add_workload_tile(): |
| OpArgMngr.add_workload('tile', np.random.uniform(size=(4, 1)), 2) |
| a = np.array([0, 1, 2]) |
| b = np.array([[1, 2], [3, 4]]) |
| OpArgMngr.add_workload('tile', a, 2) |
| OpArgMngr.add_workload('tile', a, (2, 2)) |
| OpArgMngr.add_workload('tile', a, (1, 2)) |
| OpArgMngr.add_workload('tile', b, 2) |
| OpArgMngr.add_workload('tile', b, (2, 1)) |
| OpArgMngr.add_workload('tile', b, (2, 2)) |
| OpArgMngr.add_workload('tile', np.arange(5), 1) |
| OpArgMngr.add_workload('tile', np.array([[], []]), 2) |
| OpArgMngr.add_workload('tile', np.array([[[]]]), (3, 2, 5)) |
| reps = [(2,), (1, 2), (2, 1), (2, 2), (2, 3, 2), (3, 2)] |
| shape = [(3,), (2, 3), (3, 4, 3), (3, 2, 3), (4, 3, 2, 4), (2, 2)] |
| for s in shape: |
| b = np.random.randint(0, 10, size=s) |
| for _ in reps: |
| # RuntimeError to be tracked |
| # where s = (3, 4, 3), r = (2, 3, 2) |
| # OpArgMngr.add_workload('tile', b, r) |
| pass |
| |
| |
| def _add_workload_transpose(): |
| OpArgMngr.add_workload('transpose', np.random.uniform(size=(4, 1))) |
| OpArgMngr.add_workload('transpose', np.array([[]])) |
| OpArgMngr.add_workload('transpose', np.array([[1, 2]])) |
| OpArgMngr.add_workload('transpose', np.array([[1, 2, 3], [4, 5, 6]])) |
| OpArgMngr.add_workload('transpose', np.array([[1, 2], [3, 4], [5, 6]]), (1, 0)) |
| OpArgMngr.add_workload('transpose', np.array([[1, 2], [3, 4]])) |
| |
| |
| def _add_workload_linalg_norm(): |
| OpArgMngr.add_workload('linalg.norm', np.random.uniform(size=(4, 1))) |
| for dt in ["float64", "float32"]: |
| OpArgMngr.add_workload('linalg.norm', np.array([], dtype=dt)) |
| OpArgMngr.add_workload('linalg.norm', np.array([np.array([]), np.array([])], dtype=dt)) |
| for v in ([1, 2, 3, 4], [-1, -2, -3, -4], [-1, 2, -3, 4]): |
| OpArgMngr.add_workload('linalg.norm', np.array(v, dtype=dt)) |
| A = np.array([[1, 2, 3], [4, 5, 6]], dtype=dt) |
| [OpArgMngr.add_workload('linalg.norm', A[:, k]) for k in range(A.shape[1])] |
| OpArgMngr.add_workload('linalg.norm', A, axis=0) |
| [OpArgMngr.add_workload('linalg.norm', A[k, :]) for k in range(A.shape[0])] |
| OpArgMngr.add_workload('linalg.norm', A, axis=1) |
| B = np.arange(1, 25).reshape(2, 3, 4).astype(dt) |
| for axis in itertools.combinations(range(-B.ndim, B.ndim), 2): |
| row_axis, col_axis = axis |
| if row_axis < 0: |
| row_axis += B.ndim |
| if col_axis < 0: |
| col_axis += B.ndim |
| if row_axis == col_axis: |
| # improper assertion behavior |
| # assertRaises(ValueError, np.linalg.norm, B, axis=axis) |
| pass |
| else: |
| OpArgMngr.add_workload('linalg.norm', B, axis=axis) |
| k_index = B.ndim - row_axis - col_axis |
| for k in range(B.shape[k_index]): |
| if row_axis < col_axis: |
| OpArgMngr.add_workload('linalg.norm', np.take(B[:], np.array(k), axis=k_index)) |
| else: |
| OpArgMngr.add_workload('linalg.norm', np.take(B[:], np.array(k), axis=k_index).T) |
| A = np.arange(1, 25, dtype=dt).reshape(2, 3, 4) |
| OpArgMngr.add_workload('linalg.norm', A, ord=None, axis=None) |
| OpArgMngr.add_workload('linalg.norm', A, ord=None, axis=None, keepdims=True) |
| for k in range(A.ndim): |
| OpArgMngr.add_workload('linalg.norm', A, axis=k) |
| OpArgMngr.add_workload('linalg.norm', A, axis=k, keepdims=True) |
| for k in itertools.permutations(range(A.ndim), 2): |
| OpArgMngr.add_workload('linalg.norm', A, axis=k) |
| OpArgMngr.add_workload('linalg.norm', A, axis=k, keepdims=True) |
| OpArgMngr.add_workload('linalg.norm', np.array([[]], dtype=dt)) |
| A = np.array([[1, 3], [5, 7]], dtype=dt) |
| OpArgMngr.add_workload('linalg.norm', A, 2) |
| OpArgMngr.add_workload('linalg.norm', A, -2) |
| OpArgMngr.add_workload('linalg.norm', A, 'nuc') |
| A = (1 / 10) * np.array([[1, 2, 3], [6, 0, 5], [3, 2, 1]], dtype=dt) |
| OpArgMngr.add_workload('linalg.norm', A) |
| OpArgMngr.add_workload('linalg.norm', A, 'fro') |
| OpArgMngr.add_workload('linalg.norm', A, 1) |
| OpArgMngr.add_workload('linalg.norm', A, -1) |
| for dt in [np.float32, np.float64]: |
| OpArgMngr.add_workload('linalg.norm', np.array([[1, 0, 1], [0, 1, 1]], dtype=dt)) |
| OpArgMngr.add_workload('linalg.norm', np.array([[1, 0, 1], [0, 1, 1]], dtype=dt), 'fro') |
| |
| |
| def _add_workload_linalg_cholesky(): |
| shapes = [(1, 1), (2, 2), (3, 3), (50, 50), (3, 10, 10)] |
| dtypes = (np.float32, np.float64) |
| |
| with random_seed(1): |
| for shape, dtype in itertools.product(shapes, dtypes): |
| a = _np.random.randn(*shape) |
| |
| t = list(range(len(shape))) |
| t[-2:] = -1, -2 |
| |
| a = _np.matmul(a.transpose(t).conj(), a) |
| |
| OpArgMngr.add_workload('linalg.cholesky', np.array(a, dtype=dtype)) |
| |
| # test_0_size |
| for dtype in dtypes: |
| a = np.zeros((0, 1, 1)) |
| OpArgMngr.add_workload('linalg.cholesky', np.array(a, dtype=dtype)) |
| a = np.zeros((1, 0, 0)) |
| OpArgMngr.add_workload('linalg.cholesky', np.array(a, dtype=dtype)) |
| |
| |
| def _add_workload_linalg_qr(): |
| A = np.array([[0, 1], [1, 1], [1, 1], [2, 1]]) |
| OpArgMngr.add_workload('linalg.qr', A) |
| # default mode in numpy is 'reduced' |
| OpArgMngr.add_workload('linalg.qr', A, mode='reduced') |
| |
| |
| def _add_workload_linalg_inv(): |
| OpArgMngr.add_workload('linalg.inv', np.array(_np.ones((0, 0)), dtype=np.float32)) |
| OpArgMngr.add_workload('linalg.inv', np.array(_np.ones((0, 1, 1)), dtype=np.float64)) |
| |
| |
| def _add_workload_linalg_solve(): |
| shapes = [(0,0), (1,1), (5,5), (6,6), (3,5,5), (3,0,0), (2,5,5), (0,5,5), (2,3,4,4)] |
| nrhs = (0, 1, 2, 3) |
| dtypes = (np.float32, np.float64) |
| for dtype, shape in itertools.product(dtypes, shapes): |
| a = _np.random.rand(*shape) |
| shape_b = list(shape) |
| shape_b[-1] = 1 |
| x = _np.random.rand(*shape_b) |
| b = _np.matmul(a, x) |
| shape_b.pop() |
| b = b.reshape(shape_b) |
| OpArgMngr.add_workload('linalg.solve', np.array(a, dtype=dtype), np.array(b, dtype=dtype)) |
| for nrh in nrhs: |
| shape_b = list(shape) |
| shape_b[-1] = nrh |
| x = _np.random.rand(*shape_b) |
| b = _np.matmul(a, x) |
| OpArgMngr.add_workload('linalg.solve', np.array(a, dtype=dtype), np.array(b, dtype=dtype)) |
| |
| |
| def _add_workload_linalg_det(): |
| OpArgMngr.add_workload('linalg.det', np.array(_np.ones((2, 2)), dtype=np.float32)) |
| OpArgMngr.add_workload('linalg.det', np.array(_np.ones((0, 1, 1)), dtype=np.float64)) |
| |
| |
| def _add_workload_linalg_tensorinv(): |
| shapes = [ |
| (1, 20, 4, 5), |
| (2, 2, 10, 4, 5), |
| (2, 12, 5, 3, 4, 5), |
| (3, 2, 3, 4, 24) |
| ] |
| dtypes = (np.float32, np.float64) |
| for dtype, shape in itertools.product(dtypes, shapes): |
| ind = shape[0] |
| prod_front = 1 |
| prod_back = 1 |
| for k in shape[1:ind + 1]: |
| prod_front *= k |
| for k in shape[1 + ind:]: |
| prod_back *= k |
| a_shape = (prod_back, prod_front) |
| a = _np.random.randn(*a_shape) |
| if prod_back == prod_front: |
| if _np.allclose(_np.dot(a, _np.linalg.inv(a)), _np.eye(prod_front)): |
| a_shape = shape[1:] |
| a = a.reshape(a_shape) |
| OpArgMngr.add_workload('linalg.tensorinv', np.array(a, dtype=dtype), ind) |
| |
| |
| def _add_workload_linalg_tensorsolve(): |
| shapes = [ |
| # a_shape.ndim <= 6 |
| # (a_shape, b_shape, axes) |
| ((1, 1), (1,), None), |
| ((1, 1), (1, 1, 1, 1, 1), None), |
| ((4, 4), (4,), None), |
| ((2, 3, 3, 4, 2), (3, 4), (0, 2, 4)), |
| ((1, 3, 3, 4, 4), (1, 3, 4), (1, 3)), |
| ((1, 4, 1, 12, 3), (1, 2, 1, 2, 1, 3, 1), (1, 2, 4)), |
| ] |
| dtypes = (np.float32, np.float64) |
| for dtype in dtypes: |
| for a_shape, b_shape, axes in shapes: |
| a_ndim = len(a_shape) |
| b_ndim = len(b_shape) |
| a_trans_shape = list(a_shape) |
| a_axes = list(range(0, a_ndim)) |
| if axes is not None: |
| for k in axes: |
| a_axes.remove(k) |
| a_axes.insert(a_ndim, k) |
| for k in range(a_ndim): |
| a_trans_shape[k] = a_shape[a_axes[k]] |
| x_shape = a_trans_shape[-(a_ndim - b_ndim):] |
| prod = 1 |
| for k in x_shape: |
| prod *= k |
| if prod * prod != _np.prod(a_shape): |
| raise ValueError("a is not square") |
| if prod != _np.prod(b_shape): |
| raise ValueError("a's shape and b's shape dismatch") |
| mat_shape = (prod, prod) |
| a_trans_shape = tuple(a_trans_shape) |
| x_shape = tuple(x_shape) |
| |
| a_np = _np.eye(prod) |
| shape = mat_shape |
| while 1: |
| # generate well-conditioned matrices with small eigenvalues |
| D = _np.diag(_np.random.uniform(-1.0, 1.0, shape[-1])) |
| I = _np.eye(shape[-1]).reshape(shape) |
| v = _np.random.uniform(-1., 1., shape[-1]).reshape(shape[:-1] + (1,)) |
| v = v / _np.linalg.norm(v, axis=-2, keepdims=True) |
| v_T = _np.swapaxes(v, -1, -2) |
| U = I - 2 * _np.matmul(v, v_T) |
| a = _np.matmul(U, D) |
| if (_np.linalg.cond(a, 2) < 4): |
| a_np = a.reshape(a_trans_shape) |
| break |
| x_np = _np.random.randn(*x_shape) |
| b_np = _np.tensordot(a_np, x_np, axes=len(x_shape)) |
| a_origin_axes = list(range(a_np.ndim)) |
| if axes is not None: |
| for k in range(a_np.ndim): |
| a_origin_axes[a_axes[k]] = k |
| a_np = a_np.transpose(a_origin_axes) |
| OpArgMngr.add_workload('linalg.tensorsolve', np.array(a_np, dtype=dtype), np.array(b_np, dtype=dtype), axes) |
| |
| |
| def _add_workload_linalg_pinv(): |
| shapes = [ |
| ((1, 1), ()), |
| ((5, 5), ()), |
| ((5, 6), ()), |
| ((6, 5), ()), |
| ((2, 3, 3), (1,)), |
| ((4, 6, 5), (4,)), |
| ((2, 2, 3, 4), (2, 2)), |
| ] |
| dtypes = (np.float32, np.float64) |
| for dtype in dtypes: |
| for a_shape, rcond_shape in shapes: |
| hermitian = False |
| a_np = _np.random.uniform(-10.0, 10.0, a_shape) |
| a_np = _np.array(a_np, dtype=dtype) |
| rcond_np = _np.random.uniform(0., 0.1, rcond_shape) |
| rcond_np = _np.array(rcond_np, dtype=dtype) |
| OpArgMngr.add_workload('linalg.pinv', np.array(a_np, dtype=dtype), np.array(rcond_np, dtype=dtype), hermitian) |
| |
| |
| def _add_workload_linalg_lstsq(): |
| shapes = [ |
| ((0, 0), (0,)), |
| ((0, 0), (0, 0)), |
| ((4, 0), (4,)), |
| ((4, 0), (4, 2)), |
| ((0, 2), (0, 4)), |
| ((4, 2), (4, 0)), |
| ((0, 0), (0, 4)), |
| ((0, 2), (0, 0)), |
| ((4, 0), (4, 0)), |
| ((4, 2), (4,)), |
| ((4, 2), (4, 3)), |
| ((4, 6), (4, 3)), |
| ] |
| rconds = [None, "random", "warn"] |
| dtypes = (np.float32, np.float64) |
| for dtype, rcond in itertools.product(dtypes, rconds): |
| for a_shape, b_shape in shapes: |
| if rcond == "random": |
| rcond = _np.random.uniform(100, 200) |
| if rcond == "warn": |
| rcond = -1 |
| a_np = _np.random.uniform(-10.0, 10.0, a_shape) |
| b_np = _np.random.uniform(-10.0, 10.0, b_shape) |
| a = np.array(a_np, dtype=dtype) |
| b = np.array(b_np, dtype=dtype) |
| OpArgMngr.add_workload('linalg.lstsq', a, b, rcond) |
| |
| |
| def _add_workload_linalg_eigvals(): |
| OpArgMngr.add_workload('linalg.eigvals', np.array(_np.diag((0, 0)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eigvals', np.array(_np.diag((1, 1)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eigvals', np.array(_np.diag((2, 2)), dtype=np.float64)) |
| |
| |
| def _add_workload_linalg_eig(): |
| OpArgMngr.add_workload('linalg.eig', np.array(_np.diag((0, 0)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eig', np.array(_np.diag((1, 1)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eig', np.array(_np.diag((2, 2)), dtype=np.float64)) |
| |
| |
| def _add_workload_linalg_eigvalsh(): |
| OpArgMngr.add_workload('linalg.eigvalsh', np.array(_np.diag((0, 0)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eigvalsh', np.array(_np.diag((1, 1)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eigvalsh', np.array(_np.diag((2, 2)), dtype=np.float64)) |
| |
| |
| def _add_workload_linalg_eigh(): |
| OpArgMngr.add_workload('linalg.eigh', np.array(_np.diag((0, 0)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eigh', np.array(_np.diag((1, 1)), dtype=np.float64)) |
| OpArgMngr.add_workload('linalg.eigh', np.array(_np.diag((2, 2)), dtype=np.float64)) |
| |
| |
| def _add_workload_linalg_slogdet(): |
| OpArgMngr.add_workload('linalg.slogdet', np.array(_np.ones((2, 2)), dtype=np.float32)) |
| OpArgMngr.add_workload('linalg.slogdet', np.array(_np.ones((0, 1, 1)), dtype=np.float64)) |
| |
| |
| def _add_workload_trace(): |
| OpArgMngr.add_workload('trace', np.random.uniform(size=(4, 1))) |
| OpArgMngr.add_workload('trace', np.random.uniform(size=(3, 2))) |
| |
| |
| def _add_workload_tril(): |
| OpArgMngr.add_workload('tril', np.random.uniform(size=(4, 1))) |
| for dt in ['float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8']: |
| OpArgMngr.add_workload('tril', np.ones((2, 2), dtype=dt)) |
| a = np.array([ |
| [[1, 1], [1, 1]], |
| [[1, 1], [1, 0]], |
| [[1, 1], [0, 0]], |
| ], dtype=dt) |
| OpArgMngr.add_workload('tril', a) |
| arr = np.array([[1, 1, _np.inf], |
| [1, 1, 1], |
| [_np.inf, 1, 1]]) |
| OpArgMngr.add_workload('tril', arr) |
| OpArgMngr.add_workload('tril', np.zeros((3, 3), dtype=dt)) |
| import mxnet as mx |
| assertRaises(mx.MXNetError, np.tril, 10) |
| assertRaises(mx.MXNetError, np.tril, 2, 10) |
| |
| |
| def _add_workload_triu(): |
| OpArgMngr.add_workload('triu', np.random.uniform(size=(4, 1))) |
| for dt in ['float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8']: |
| OpArgMngr.add_workload('triu', np.ones((2, 2), dtype=dt)) |
| a = np.array([ |
| [[1, 1], [1, 1]], |
| [[1, 1], [1, 0]], |
| [[1, 1], [0, 0]], |
| ], dtype=dt) |
| OpArgMngr.add_workload('triu', a) |
| arr = np.array([[1, 1, _np.inf], |
| [1, 1, 1], |
| [_np.inf, 1, 1]]) |
| OpArgMngr.add_workload('triu', arr) |
| OpArgMngr.add_workload('triu', np.zeros((3, 3), dtype=dt)) |
| |
| |
| def _add_workload_einsum(): |
| chars = 'abcdefghij' |
| sizes = [2, 3, 4, 5, 4, 3, 2, 6, 5, 4] |
| size_dict = dict(zip(chars, sizes)) |
| |
| configs = [ |
| # test_einsum_broadcast |
| ('ij...,j...->ij...', [(2, 3, 4), (3,)]), |
| ('ij...,...j->ij...', [(2, 3, 4), (3,)]), |
| ('ij...,j->ij...', [(2, 3, 4), (3,)]), |
| ('cl, cpx->lpx', [(2, 3), (2, 3, 2731)]), |
| ('aabb->ab', [(5, 5, 5, 5)]), |
| ('mi,mi,mi->m', [(5, 5), (5, 5), (5, 5)]), |
| ('a,ab,abc->abc', None), |
| ('a,b,ab->ab', None), |
| ('ea,fb,gc,hd,abcd->efgh', None), |
| ('ea,fb,abcd,gc,hd->efgh', None), |
| ('abcd,ea,fb,gc,hd->efgh', None), |
| # test_complex |
| ('acdf,jbje,gihb,hfac,gfac,gifabc,hfac', None), |
| ('acdf,jbje,gihb,hfac,gfac,gifabc,hfac', None), |
| ('cd,bdhe,aidb,hgca,gc,hgibcd,hgac', None), |
| ('abhe,hidj,jgba,hiab,gab', None), |
| ('bde,cdh,agdb,hica,ibd,hgicd,hiac', None), |
| ('chd,bde,agbc,hiad,hgc,hgi,hiad', None), |
| ('chd,bde,agbc,hiad,bdi,cgh,agdb', None), |
| ('bdhe,acad,hiab,agac,hibd', None), |
| # test_collapse |
| ('ab,ab,c->', None), |
| ('ab,ab,c->c', None), |
| ('ab,ab,cd,cd->', None), |
| ('ab,ab,cd,cd->ac', None), |
| ('ab,ab,cd,cd->cd', None), |
| ('ab,ab,cd,cd,ef,ef->', None), |
| # test_inner_product |
| ('ab,ab', None), |
| ('ab,ba', None), |
| ('abc,abc', None), |
| ('abc,bac', None), |
| ('abc,cba', None), |
| # test_random_cases |
| ('aab,fa,df,ecc->bde', None), |
| ('ecb,fef,bad,ed->ac', None), |
| ('bcf,bbb,fbf,fc->', None), |
| ('bb,ff,be->e', None), |
| ('bcb,bb,fc,fff->', None), |
| ('fbb,dfd,fc,fc->', None), |
| ('afd,ba,cc,dc->bf', None), |
| ('adb,bc,fa,cfc->d', None), |
| ('bbd,bda,fc,db->acf', None), |
| ('dba,ead,cad->bce', None), |
| ('aef,fbc,dca->bde', None), |
| # test_broadcasting_dot_cases |
| ('ijk,kl,jl', [(1, 5, 4), (4, 6), (5, 6)]), |
| ('ijk,kl,jl,i->i', [(1, 5, 4), (4, 6), (5, 6), (10)]), |
| ('abjk,kl,jl', [(1, 1, 5, 4), (4, 6), (5, 6)]), |
| ('abjk,kl,jl,ab->ab', [(1, 1, 5, 4), (4, 6), (5, 6), (7, 7)]), |
| ('obk,ijk->ioj', [(2, 4, 8), (2, 4, 8)]), |
| ] |
| # check_einsum_sums |
| configs.extend([('i->', [(i,)]) for i in range(1, 17)]) |
| configs.extend([('...i->...', [(2, 3, i,)]) for i in range(1, 17)]) |
| configs.extend([('i...->...', [(2, i,)]) for i in range(1, 17)]) |
| configs.extend([('i...->...', [(2, 3, i,)]) for i in range(1, 17)]) |
| configs.extend([('ii', [(i, i,)]) for i in range(1, 17)]) |
| configs.extend([('..., ...', [(3, i,), (2, 3, i,)]) for i in range(1, 17)]) |
| configs.extend([('...i, ...i', [(2, 3, i,), (i,)]) for i in range(1, 17)]) |
| configs.extend([('i..., i...', [(i, 3, 2,), (i,)]) for i in range(1, 11)]) |
| configs.extend([('i, j', [(3,), (i,)]) for i in range(1, 17)]) |
| configs.extend([('ij, j', [(4, i), (i,)]) for i in range(1, 17)]) |
| configs.extend([('ji, j', [(i, 4), (i,)]) for i in range(1, 17)]) |
| configs.extend([('ij, jk', [(4, i), (i, 6)]) for i in range(1, 8)]) |
| configs.extend([ |
| ('ij,jk,kl', [(3, 4), (4, 5), (5, 6)]), |
| ('ijk, jil -> kl', [(3, 4, 5), (4, 3, 2)]), |
| ('i, i, i -> i', [(8,), (8,), (8,)]), |
| (',i->', [(), (9,)]), |
| ('i,->', [(9,), ()]), |
| ]) |
| configs.extend([('...,...', [(n,), (n,)]) for n in range(1, 25)]) |
| configs.extend([('i,i', [(n,), (n,)]) for n in range(1, 25)]) |
| configs.extend([('i,->i', [(n,), ()]) for n in range(1, 25)]) |
| configs.extend([(',i->i', [(), (n,)]) for n in range(1, 25)]) |
| configs.extend([('i,->', [(n,), ()]) for n in range(1, 25)]) |
| configs.extend([(',i->', [(), (n,)]) for n in range(1, 25)]) |
| configs.extend([('...,...', [(n - 1,), (n - 1,)]) for n in range(1, 25)]) |
| configs.extend([('i,i', [(n - 1,), (n - 1,)]) for n in range(1, 25)]) |
| configs.extend([('i,->i', [(n - 1,), ()]) for n in range(1, 25)]) |
| configs.extend([(',i->i', [(), (n - 1,)]) for n in range(1, 25)]) |
| configs.extend([('i,->', [(n - 1,), ()]) for n in range(1, 25)]) |
| configs.extend([(',i->', [(), (n - 1,)]) for n in range(1, 25)]) |
| |
| for optimize in [False, True]: |
| for config in configs: |
| subscripts, args = config |
| if args is None: |
| args = [] |
| terms = subscripts.split('->')[0].split(',') |
| for term in terms: |
| dims = [size_dict[x] for x in term] |
| args.append(np.random.uniform(size=dims)) |
| else: |
| args = [np.random.uniform(size=arg) for arg in args] |
| OpArgMngr.add_workload('einsum', subscripts, *args, optimize=optimize) |
| |
| |
| def _add_workload_expm1(): |
| OpArgMngr.add_workload('expm1', np.random.uniform(size=(4, 1))) |
| OpArgMngr.add_workload('expm1', np.random.uniform(size=(1, 1))) |
| OpArgMngr.add_workload('expm1', np.array([_np.inf])) |
| OpArgMngr.add_workload('expm1', np.array([-_np.inf])) |
| OpArgMngr.add_workload('expm1', np.array([0.])) |
| OpArgMngr.add_workload('expm1', np.array([-0.])) |
| |
| |
| def _add_workload_argmax(): |
| OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 0) |
| OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 1) |
| OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 2) |
| OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 3) |
| OpArgMngr.add_workload('argmax', np.random.uniform(size=(4, 5, 6, 7, 8)), 4) |
| # OpArgMngr.add_workload('argmax', np.array([0, 1, 2, 3, _np.nan])) |
| # OpArgMngr.add_workload('argmax', np.array([0, 1, 2, _np.nan, 3])) |
| # OpArgMngr.add_workload('argmax', np.array([_np.nan, 0, 1, 2, 3])) |
| # OpArgMngr.add_workload('argmax', np.array([_np.nan, 0, _np.nan, 2, 3])) |
| OpArgMngr.add_workload('argmax', np.array([False, False, False, False, True])) |
| OpArgMngr.add_workload('argmax', np.array([False, False, False, True, False])) |
| OpArgMngr.add_workload('argmax', np.array([True, False, False, False, False])) |
| OpArgMngr.add_workload('argmax', np.array([True, False, True, False, False])) |
| |
| |
| def _add_workload_argmin(): |
| OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 0) |
| OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 1) |
| OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 2) |
| OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 3) |
| OpArgMngr.add_workload('argmin', np.random.uniform(size=(4, 5, 6, 7, 8)), 4) |
| # OpArgMngr.add_workload('argmin', np.array([0, 1, 2, 3, _np.nan])) |
| # OpArgMngr.add_workload('argmin', np.array([0, 1, 2, _np.nan, 3])) |
| # OpArgMngr.add_workload('argmin', np.array([_np.nan, 0, 1, 2, 3])) |
| # OpArgMngr.add_workload('argmin', np.array([_np.nan, 0, _np.nan, 2, 3])) |
| OpArgMngr.add_workload('argmin', np.array([False, False, False, False, True])) |
| OpArgMngr.add_workload('argmin', np.array([False, False, False, True, False])) |
| OpArgMngr.add_workload('argmin', np.array([True, False, False, False, False])) |
| OpArgMngr.add_workload('argmin', np.array([True, False, True, False, False])) |
| |
| |
| def _add_workload_around(): |
| OpArgMngr.add_workload('around', np.array([1.56, 72.54, 6.35, 3.25]), decimals=1) |
| |
| |
| def _add_workload_round(): |
| OpArgMngr.add_workload('round', np.array([1.56, 72.54, 6.35, 3.25]), decimals=1) |
| |
| |
| def _add_workload_round_(): |
| OpArgMngr.add_workload('round_', np.array([1.56, 72.54, 6.35, 3.25]), decimals=1) |
| |
| |
| def _add_workload_argsort(): |
| for dtype in [np.int32, np.float32]: |
| a = np.arange(101, dtype=dtype) |
| OpArgMngr.add_workload('argsort', a) |
| OpArgMngr.add_workload('argsort', np.array([[3, 2], [1, 0]]), 1) |
| OpArgMngr.add_workload('argsort', np.array([[3, 2], [1, 0]]), 0) |
| a = np.ones((3, 2, 1, 0)) |
| for axis in range(-a.ndim, a.ndim): |
| OpArgMngr.add_workload('argsort', a, axis) |
| |
| |
| def _add_workload_sort(): |
| OpArgMngr.add_workload('sort', np.random.uniform(0, 100), axis=None) |
| OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=()), axis=None) |
| OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=(2, 3, 4)), axis=None) |
| OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=(4, 3, 0)), axis=None) |
| OpArgMngr.add_workload('sort', np.random.randint(0, 100, size=(2, 3, 4)), axis=-1) |
| OpArgMngr.add_workload('sort', np.random.randint(0, 100, size=(4, 3, 5)), axis=-1, kind='mergesort') |
| OpArgMngr.add_workload('sort', np.random.randint(0, 100, size=(2, 3, 4)), axis=None, kind='quicksort') |
| OpArgMngr.add_workload('sort', np.random.uniform(0, 100, size=(4, 3, 0))) |
| |
| |
| def _add_workload_broadcast_arrays(array_pool): |
| OpArgMngr.add_workload('broadcast_arrays', array_pool['4x1'], array_pool['1x2']) |
| |
| |
| def _add_workload_broadcast_to(): |
| OpArgMngr.add_workload('broadcast_to', np.array(0), (0,)) |
| OpArgMngr.add_workload('broadcast_to', np.array(0), (1,)) |
| OpArgMngr.add_workload('broadcast_to', np.array(0), (3,)) |
| OpArgMngr.add_workload('broadcast_to', np.ones(1), (1,)) |
| OpArgMngr.add_workload('broadcast_to', np.ones(1), (2,)) |
| OpArgMngr.add_workload('broadcast_to', np.ones(1), (1, 2, 3)) |
| OpArgMngr.add_workload('broadcast_to', np.arange(3), (3,)) |
| OpArgMngr.add_workload('broadcast_to', np.arange(3), (1, 3)) |
| OpArgMngr.add_workload('broadcast_to', np.arange(3), (2, 3)) |
| OpArgMngr.add_workload('broadcast_to', np.ones(0), 0) |
| OpArgMngr.add_workload('broadcast_to', np.ones(1), 1) |
| OpArgMngr.add_workload('broadcast_to', np.ones(1), 2) |
| OpArgMngr.add_workload('broadcast_to', np.ones(1), (0,)) |
| OpArgMngr.add_workload('broadcast_to', np.ones((1, 2)), (0, 2)) |
| OpArgMngr.add_workload('broadcast_to', np.ones((2, 1)), (2, 0)) |
| |
| |
| def _add_workload_clip(): |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("float"), -12.8, 100.2) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("float"), 0, 0) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("int"), -120, 100) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("int"), 0.0, 2.0) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("int"), 0, 0) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("uint8"), 0, 0) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("uint8"), 0.0, 2.0) |
| OpArgMngr.add_workload('clip', (np.random.normal(size=(1000,)) * 1024).astype("uint8"), -120, 100) |
| # OpArgMngr.add_workload('clip', np.random.normal(size=(1000,)), np.zeros((1000,))+0.5, 1) |
| # OpArgMngr.add_workload('clip', np.random.normal(size=(1000,)), 0, np.zeros((1000,))+0.5) |
| # OpArgMngr.add_workload('clip', np.array([0, 1, 2, 3, 4, 5, 6, 7]), 3) |
| # OpArgMngr.add_workload('clip', np.array([0, 1, 2, 3, 4, 5, 6, 7]), a_min=3) |
| # OpArgMngr.add_workload('clip', np.array([0, 1, 2, 3, 4, 5, 6, 7]), a_max=4) |
| OpArgMngr.add_workload('clip', np.array([-2., _np.nan, 0.5, 3., 0.25, _np.nan]), -1, 1) |
| |
| |
| def _add_workload_cumsum(): |
| for ctype in _DTYPES: |
| OpArgMngr.add_workload('cumsum', np.array([1, 2, 10, 11, 6, 5, 4], dtype=ctype)) |
| OpArgMngr.add_workload('cumsum', np.array([[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]], dtype=ctype), axis=0) |
| OpArgMngr.add_workload('cumsum', np.array([[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]], dtype=ctype), axis=1) |
| |
| |
| def _add_workload_ravel(): |
| OpArgMngr.add_workload('ravel', np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]])) |
| |
| |
| def _add_workload_dot(): |
| OpArgMngr.add_workload('dot', np.random.normal(size=(2, 4)), np.random.normal(size=(4, 2))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(4, 2)), np.random.normal(size=(2, 1))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(4, 2)), np.random.normal(size=(2,))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(1, 2)), np.random.normal(size=(2, 4))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(2, 4)), np.random.normal(size=(4,))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(1, 2)), np.random.normal(size=(2, 1))) |
| OpArgMngr.add_workload('dot', np.ones((3, 1)), np.array([5.3])) |
| OpArgMngr.add_workload('dot', np.array([5.3]), np.ones((1, 3))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(1, 1)), np.random.normal(size=(1, 4))) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(4, 1)), np.random.normal(size=(1, 1))) |
| |
| dims = [(), (1,), (1, 1)] |
| for (dim1, dim2) in itertools.product(dims, dims): |
| b1 = np.zeros(dim1) |
| b2 = np.zeros(dim2) |
| OpArgMngr.add_workload('dot', b1, b2) |
| OpArgMngr.add_workload('dot', np.array([[1, 2], [3, 4]], dtype=float), np.array([[1, 0], [1, 1]], dtype=float)) |
| OpArgMngr.add_workload('dot', np.random.normal(size=(1024, 16)), np.random.normal(size=(16, 32))) |
| |
| |
| def _add_workload_fix(): |
| OpArgMngr.add_workload('fix', np.array([[1.0, 1.1, 1.5, 1.8], [-1.0, -1.1, -1.5, -1.8]])) |
| OpArgMngr.add_workload('fix', np.array([3.14])) |
| |
| |
| def _add_workload_flip(): |
| OpArgMngr.add_workload('flip', np.random.normal(size=(4, 4)), 1) |
| OpArgMngr.add_workload('flip', np.array([[0, 1, 2], [3, 4, 5]]), 1) |
| OpArgMngr.add_workload('flip', np.random.normal(size=(4, 4)), 0) |
| OpArgMngr.add_workload('flip', np.array([[0, 1, 2], [3, 4, 5]]), 0) |
| OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 0) |
| OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 1) |
| OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), 2) |
| for i in range(4): |
| OpArgMngr.add_workload('flip', np.arange(2 * 3 * 4 * 5).reshape(2, 3, 4, 5), i) |
| OpArgMngr.add_workload('flip', np.array([[1, 2, 3], [4, 5, 6]])) |
| OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), ()) |
| OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), (0, 2)) |
| OpArgMngr.add_workload('flip', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]]), (1, 2)) |
| |
| |
| def _add_workload_flipud(): |
| OpArgMngr.add_workload('flipud', np.random.normal(size=(4, 4))) |
| OpArgMngr.add_workload('flipud', np.array([[0, 1, 2], [3, 4, 5]])) |
| OpArgMngr.add_workload('flipud', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])) |
| |
| |
| def _add_workload_fliplr(): |
| OpArgMngr.add_workload('fliplr', np.random.normal(size=(4, 4))) |
| OpArgMngr.add_workload('fliplr', np.array([[0, 1, 2], [3, 4, 5]])) |
| OpArgMngr.add_workload('fliplr', np.array([[[0, 1], [2, 3]], [[4, 5], [6, 7]]])) |
| |
| |
| def _add_workload_max(array_pool): |
| OpArgMngr.add_workload('max', array_pool['4x1']) |
| |
| |
| def _add_workload_amax(array_pool): |
| a = np.array([3, 4, 5, 10, -3, -5, 6.0]) |
| b = np.array([[3, 6.0, 9.0], |
| [4, 10.0, 5.0], |
| [8, 3.0, 2.0]]) |
| c = np.array(1) |
| OpArgMngr.add_workload('amax', array_pool['4x1']) |
| OpArgMngr.add_workload('amax', a) |
| OpArgMngr.add_workload('amax', b, axis=0) |
| OpArgMngr.add_workload('amax', b, axis=1) |
| OpArgMngr.add_workload('amax', c) |
| OpArgMngr.add_workload('amax', c, axis=None) |
| |
| |
| def _add_workload_min(array_pool): |
| OpArgMngr.add_workload('min', array_pool['4x1']) |
| |
| |
| def _add_workload_amin(array_pool): |
| a = np.array([3, 4, 5, 10, -3, -5, 6.0]) |
| b = np.array([[3, 6.0, 9.0], |
| [4, 10.0, 5.0], |
| [8, 3.0, 2.0]]) |
| c = np.array(1) |
| OpArgMngr.add_workload('amin', array_pool['4x1']) |
| OpArgMngr.add_workload('amin', a) |
| OpArgMngr.add_workload('amin', b, axis=0) |
| OpArgMngr.add_workload('amin', b, axis=1) |
| OpArgMngr.add_workload('amin', c) |
| OpArgMngr.add_workload('amin', c, axis=None) |
| |
| |
| def _add_workload_mean(array_pool): |
| OpArgMngr.add_workload('mean', array_pool['4x1']) |
| OpArgMngr.add_workload('mean', array_pool['4x1'], axis=0, keepdims=True) |
| OpArgMngr.add_workload('mean', np.array([[1, 2, 3], [4, 5, 6]])) |
| OpArgMngr.add_workload('mean', np.array([]).reshape(2,0,0)) |
| OpArgMngr.add_workload('mean', np.array([[1, 2, 3], [4, 5, 6]]), axis=0) |
| OpArgMngr.add_workload('mean', np.array([[1, 2, 3], [4, 5, 6]]), axis=1) |
| |
| |
| def _add_workload_ones_like(array_pool): |
| OpArgMngr.add_workload('ones_like', array_pool['4x1']) |
| |
| |
| def _add_workload_atleast_nd(): |
| a_0 = np.array(1) |
| b_0 = np.array(2) |
| a_1 = np.array([1, 2]) |
| b_1 = np.array([2, 3]) |
| a_2 = np.array([[1, 2], [1, 2]]) |
| b_2 = np.array([[2, 3], [2, 3]]) |
| a_3 = [a_2, a_2] |
| b_3 = [b_2, b_2] |
| |
| OpArgMngr.add_workload('atleast_1d', a_0, b_0) |
| OpArgMngr.add_workload('atleast_1d', a_1, b_1) |
| OpArgMngr.add_workload('atleast_1d', a_2, b_2) |
| OpArgMngr.add_workload('atleast_1d', a_3, b_3) |
| OpArgMngr.add_workload('atleast_2d', a_0, b_0) |
| OpArgMngr.add_workload('atleast_2d', a_1, b_1) |
| OpArgMngr.add_workload('atleast_2d', a_2, b_2) |
| OpArgMngr.add_workload('atleast_2d', a_3, b_3) |
| OpArgMngr.add_workload('atleast_3d', a_0, b_0) |
| OpArgMngr.add_workload('atleast_3d', a_1, b_1) |
| OpArgMngr.add_workload('atleast_3d', a_2, b_2) |
| OpArgMngr.add_workload('atleast_3d', a_3, b_3) |
| |
| |
| def _add_workload_prod(array_pool): |
| OpArgMngr.add_workload('prod', array_pool['4x1']) |
| OpArgMngr.add_workload('prod', np.array([]).reshape(2,0,0)) |
| |
| |
| def _add_workload_product(array_pool): |
| OpArgMngr.add_workload('product', array_pool['4x1']) |
| |
| |
| def _add_workload_repeat(array_pool): |
| OpArgMngr.add_workload('repeat', array_pool['4x1'], 3) |
| OpArgMngr.add_workload('repeat', np.array(_np.arange(12).reshape(4, 3)[:, 2]), 3) |
| m = _np.array([1, 2, 3, 4, 5, 6]) |
| m_rect = m.reshape((2, 3)) |
| |
| OpArgMngr.add_workload('repeat', np.array(m), [1, 3, 2, 1, 1, 2]) # Argument "repeats" only supports int |
| OpArgMngr.add_workload('repeat', np.array(m), 2) |
| B = np.array(m_rect) |
| OpArgMngr.add_workload('repeat', B, [2, 1], axis=0) # Argument "repeats" only supports int |
| OpArgMngr.add_workload('repeat', B, [1, 3, 2], axis=1) # Argument "repeats" only supports int |
| OpArgMngr.add_workload('repeat', B, 2, axis=0) |
| OpArgMngr.add_workload('repeat', B, 2, axis=1) |
| |
| # test_repeat_broadcasting |
| a = _np.arange(60).reshape(3, 4, 5) |
| for axis in itertools.chain(range(-a.ndim, a.ndim), [None]): |
| OpArgMngr.add_workload('repeat', np.array(a), 2, axis=axis) |
| OpArgMngr.add_workload('repeat', np.array(a), [2], axis=axis) # Argument "repeats" only supports int |
| |
| |
| def _add_workload_reshape(): |
| arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) |
| OpArgMngr.add_workload('reshape', arr, (2, 6)) |
| OpArgMngr.add_workload('reshape', arr, (3, 4)) |
| # OpArgMngr.add_workload('reshape', arr, (3, 4), order='F') # Items are not equal with order='F' |
| OpArgMngr.add_workload('reshape', arr, (3, 4), order='C') |
| OpArgMngr.add_workload('reshape', np.array(_np.ones(100)), (100, 1, 1)) |
| |
| # test_reshape_order |
| a = np.array(_np.arange(6)) |
| # OpArgMngr.add_workload('reshape', a, (2, 3), order='F') # Items are not equal with order='F' |
| a = np.array([[1, 2], [3, 4], [5, 6], [7, 8]]) |
| b = a[:, 1] |
| # OpArgMngr.add_workload('reshape', b, (2, 2), order='F') # Items are not equal with order='F' |
| |
| a = np.array(_np.ones((0, 2))) |
| OpArgMngr.add_workload('reshape', a, (-1, 2)) |
| |
| |
| def _add_workload_rint(array_pool): |
| OpArgMngr.add_workload('rint', np.array(4607998452777363968)) |
| OpArgMngr.add_workload('rint', array_pool['4x1']) |
| |
| |
| def _add_workload_roll(): |
| # test_roll1d(self) |
| OpArgMngr.add_workload('roll', np.array(_np.arange(10)), 2) |
| |
| # test_roll2d(self) |
| x2 = np.array(_np.reshape(_np.arange(10), (2, 5))) |
| OpArgMngr.add_workload('roll', x2, 1) |
| OpArgMngr.add_workload('roll', x2, 1, axis=0) |
| OpArgMngr.add_workload('roll', x2, 1, axis=1) |
| # # Roll multiple axes at once. |
| OpArgMngr.add_workload('roll', x2, 1, axis=(0, 1)) |
| OpArgMngr.add_workload('roll', x2, (1, 0), axis=(0, 1)) |
| OpArgMngr.add_workload('roll', x2, (-1, 0), axis=(0, 1)) |
| OpArgMngr.add_workload('roll', x2, (0, 1), axis=(0, 1)) |
| OpArgMngr.add_workload('roll', x2, (0, -1), axis=(0, 1)) |
| OpArgMngr.add_workload('roll', x2, (1, 1), axis=(0, 1)) |
| OpArgMngr.add_workload('roll', x2, (-1, -1), axis=(0, 1)) |
| # # Roll the same axis multiple times. |
| # OpArgMngr.add_workload('roll', x2, 1, axis=(0, 0)) # Check failed: axes[i - 1] < axes[i] (0 vs. 0) : axes have duplicates [0,0] |
| # OpArgMngr.add_workload('roll', x2, 1, axis=(1, 1)) # Check failed: axes[i - 1] < axes[i] (1 vs. 1) : axes have duplicates [1,1] |
| # # Roll more than one turn in either direction. |
| OpArgMngr.add_workload('roll', x2, 6, axis=1) |
| OpArgMngr.add_workload('roll', x2, -4, axis=1) |
| # # test_roll_empty |
| OpArgMngr.add_workload('roll', np.array([]), 1) |
| |
| |
| def _add_workload_stack(array_pool): |
| OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2) |
| OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2, 1) |
| OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2, -1) |
| OpArgMngr.add_workload('stack', [array_pool['4x1']] * 2, -2) |
| OpArgMngr.add_workload('stack', np.random.normal(size=(2, 4, 3)), 2) |
| OpArgMngr.add_workload('stack', np.random.normal(size=(2, 4, 3)), -3) |
| OpArgMngr.add_workload('stack', np.array([[], [], []]), 1) |
| OpArgMngr.add_workload('stack', np.array([[], [], []])) |
| |
| |
| def _add_workload_sum(): |
| # OpArgMngr.add_workload('sum', np.ones(101, dtype=bool)) |
| OpArgMngr.add_workload('sum', np.arange(1, 10).reshape((3, 3)), axis=1, keepdims=True) |
| OpArgMngr.add_workload('sum', np.ones(500, dtype=np.float32)/10.) |
| OpArgMngr.add_workload('sum', np.ones(500, dtype=np.float64)/10.) |
| for dt in (np.float16, np.float32, np.float64): |
| for v in (0, 1, 2, 7, 8, 9, 15, 16, 19, 127, |
| 128, 1024, 1235): |
| d = np.arange(1, v + 1, dtype=dt) |
| OpArgMngr.add_workload('sum', d) |
| d = np.ones(500, dtype=dt) |
| OpArgMngr.add_workload('sum', d[::2]) |
| OpArgMngr.add_workload('sum', d[1::2]) |
| OpArgMngr.add_workload('sum', d[::3]) |
| OpArgMngr.add_workload('sum', d[1::3]) |
| OpArgMngr.add_workload('sum', d[::-2]) |
| OpArgMngr.add_workload('sum', d[-1::-2]) |
| OpArgMngr.add_workload('sum', d[::-3]) |
| OpArgMngr.add_workload('sum', d[-1::-3]) |
| d = np.ones((1,), dtype=dt) |
| d += d |
| OpArgMngr.add_workload('sum', d) |
| # OpArgMngr.add_workload('sum', np.array([3]), initial=2) |
| # OpArgMngr.add_workload('sum', np.array([0.2]), initial=0.1) |
| |
| |
| def _add_workload_take(): |
| OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array([], int)) |
| for mode in ['wrap', 'clip']: |
| OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array(-1, int), mode=mode) |
| OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array(4, int), mode=mode) |
| OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array([-1], int), mode=mode) |
| OpArgMngr.add_workload('take', np.array([[1, 2], [3, 4]], dtype=int), np.array([4], int), mode=mode) |
| x = (np.random.normal(size=24)*100).reshape((2, 3, 4)) |
| # OpArgMngr.add_workload('take', x, np.array([-1], int), axis=0) |
| OpArgMngr.add_workload('take', x, np.array([-1], int), axis=0, mode='clip') |
| OpArgMngr.add_workload('take', x, np.array([2], int), axis=0, mode='clip') |
| OpArgMngr.add_workload('take', x, np.array([-1], int), axis=0, mode='wrap') |
| OpArgMngr.add_workload('take', x, np.array([2], int), axis=0, mode='wrap') |
| OpArgMngr.add_workload('take', x, np.array([3], int), axis=0, mode='wrap') |
| |
| |
| def _add_workload_unique(): |
| OpArgMngr.add_workload('unique', np.array([5, 7, 1, 2, 1, 5, 7]*10), True, True, True) |
| OpArgMngr.add_workload('unique', np.array([]), True, True, True) |
| OpArgMngr.add_workload('unique', np.array([[0, 1, 0], [0, 1, 0]])) |
| OpArgMngr.add_workload('unique', np.array([[0, 1, 0], [0, 1, 0]]), axis=0) |
| OpArgMngr.add_workload('unique', np.array([[0, 1, 0], [0, 1, 0]]), axis=1) |
| # OpArgMngr.add_workload('unique', np.arange(10, dtype=np.uint8).reshape(-1, 2).astype(bool), axis=1) |
| |
| |
| def _add_workload_delete(): |
| a = np.arange(5) |
| nd_a = np.arange(5).repeat(2).reshape(1, 5, 2) |
| lims = [-6, -2, 0, 1, 2, 4, 5] |
| steps = [-3, -1, 1, 3] |
| for start in lims: |
| for stop in lims: |
| for step in steps: |
| s = slice(start, stop, step) |
| OpArgMngr.add_workload('delete', a, s) |
| OpArgMngr.add_workload('delete', nd_a, s, axis=1) |
| # mxnet.numpy arrays, even 0-sized, have a float32 dtype. Starting with numpy 1.19, the |
| # index array's of delete() must be of integer or boolean type, so we force that below. |
| OpArgMngr.add_workload('delete', a, np.array([], dtype='int32'), axis=0) |
| OpArgMngr.add_workload('delete', a, 0) |
| OpArgMngr.add_workload('delete', a, np.array([], dtype='int32')) |
| OpArgMngr.add_workload('delete', a, np.array([0, 1], dtype='int32')) |
| OpArgMngr.add_workload('delete', a, slice(1, 2)) |
| OpArgMngr.add_workload('delete', a, slice(1, -2)) |
| k = np.arange(10).reshape(2, 5) |
| OpArgMngr.add_workload('delete', k, slice(60, None), axis=1) |
| |
| |
| def _add_workload_var(array_pool): |
| OpArgMngr.add_workload('var', array_pool['4x1']) |
| OpArgMngr.add_workload('var', np.array([_np.float16(1.)])) |
| OpArgMngr.add_workload('var', np.array([1])) |
| OpArgMngr.add_workload('var', np.array([1.])) |
| OpArgMngr.add_workload('var', np.array([[1, 2, 3], [4, 5, 6]])) |
| OpArgMngr.add_workload('var', np.array([[1, 2, 3], [4, 5, 6]]), 0) |
| OpArgMngr.add_workload('var', np.array([[1, 2, 3], [4, 5, 6]]), 1) |
| OpArgMngr.add_workload('var', np.array([_np.nan])) |
| OpArgMngr.add_workload('var', np.array([1, -1, 1, -1])) |
| OpArgMngr.add_workload('var', np.array([1,2,3,4], dtype='f8')) |
| |
| |
| def _add_workload_zeros_like(array_pool): |
| OpArgMngr.add_workload('zeros_like', array_pool['4x1']) |
| OpArgMngr.add_workload('zeros_like', np.random.uniform(size=(3, 3)).astype(np.float64), dtype=np.int64) |
| OpArgMngr.add_workload('zeros_like', np.random.uniform(size=(3, 3)).astype(np.float32), dtype=np.float64) |
| OpArgMngr.add_workload('zeros_like', np.random.randint(2, size = (3, 3)), dtype=int) |
| |
| |
| def _add_workload_full_like(array_pool): |
| OpArgMngr.add_workload('full_like', array_pool['4x1'], 1) |
| OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(1,3,4), dtype='float64'), 1) |
| OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(9,3,1)), 2, dtype=np.int64) |
| OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(9,3)), _np.nan) |
| OpArgMngr.add_workload('full_like', np.random.uniform(low=0, high=100, size=(2,0)), 0, dtype=np.float32) |
| |
| |
| def _add_workload_outer(): |
| OpArgMngr.add_workload('outer', np.ones((5)), np.ones((2))) |
| |
| |
| def _add_workload_kron(): |
| OpArgMngr.add_workload('kron', np.ones((5)), np.ones((2))) |
| OpArgMngr.add_workload('kron', np.arange(16).reshape((4,4)), np.ones((4,4))) |
| OpArgMngr.add_workload('kron', np.ones((2,4)), np.zeros((2,4))) |
| OpArgMngr.add_workload('kron', np.ones(()), np.ones(())) |
| |
| |
| def _add_workload_meshgrid(): |
| OpArgMngr.add_workload('meshgrid', np.array([1, 2, 3])) |
| OpArgMngr.add_workload('meshgrid', np.array([1, 2, 3]), np.array([4, 5, 6, 7])) |
| OpArgMngr.add_workload('meshgrid', np.array([1, 2, 3]), np.array([4, 5, 6, 7]), indexing='ij') |
| |
| |
| def _add_workload_abs(): |
| OpArgMngr.add_workload('abs', np.random.uniform(size=(11,)).astype(np.float32)) |
| OpArgMngr.add_workload('abs', np.random.uniform(size=(5,)).astype(np.float64)) |
| OpArgMngr.add_workload('abs', np.array([_np.inf, -_np.inf, _np.nan])) |
| |
| |
| def _add_workload_fabs(): |
| OpArgMngr.add_workload('fabs', np.random.uniform(size=(11,)).astype(np.float32)) |
| OpArgMngr.add_workload('fabs', np.random.uniform(size=(5,)).astype(np.float64)) |
| OpArgMngr.add_workload('fabs', np.array([_np.inf, -_np.inf, _np.nan])) |
| |
| |
| def _add_workload_add(array_pool): |
| OpArgMngr.add_workload('add', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('add', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('add', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('add', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_arctan2(): |
| OpArgMngr.add_workload('arctan2', np.array([1, -1, 1]), np.array([1, 1, -1])) |
| OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([np.NZERO, np.NZERO])) |
| OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([np.PZERO, np.PZERO])) |
| OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([-1, -1])) |
| OpArgMngr.add_workload('arctan2', np.array([np.PZERO, np.NZERO]), np.array([1, 1])) |
| OpArgMngr.add_workload('arctan2', np.array([-1, -1]), np.array([np.PZERO, np.NZERO])) |
| OpArgMngr.add_workload('arctan2', np.array([1, 1]), np.array([np.PZERO, np.NZERO])) |
| OpArgMngr.add_workload('arctan2', np.array([1, -1, 1, -1]), np.array([-_np.inf, -_np.inf, _np.inf, _np.inf])) |
| OpArgMngr.add_workload('arctan2', np.array([_np.inf, -_np.inf]), np.array([1, 1])) |
| OpArgMngr.add_workload('arctan2', np.array([_np.inf, -_np.inf]), np.array([-_np.inf, -_np.inf])) |
| OpArgMngr.add_workload('arctan2', np.array([_np.inf, -_np.inf]), np.array([_np.inf, _np.inf])) |
| |
| |
| def _add_workload_copysign(): |
| OpArgMngr.add_workload('copysign', np.array([1, 0, 0]), np.array([-1, -1, 1])) |
| OpArgMngr.add_workload('copysign', np.array([-2, 5, 1, 4, 3], dtype=np.float16), np.array([0, 1, 2, 4, 2], dtype=np.float16)) |
| |
| |
| def _add_workload_degrees(): |
| OpArgMngr.add_workload('degrees', np.array(np.pi)) |
| OpArgMngr.add_workload('degrees', np.array(-0.5*np.pi)) |
| |
| |
| def _add_workload_true_divide(): |
| for dt in [np.float32, np.float64, np.float16]: |
| OpArgMngr.add_workload('true_divide', np.array([10, 10, -10, -10], dt), np.array([20, -20, 20, -20], dt)) |
| |
| |
| def _add_workload_inner(): |
| OpArgMngr.add_workload('inner', np.zeros(shape=(1, 80), dtype=np.float64), np.zeros(shape=(1, 80), dtype=np.float64)) |
| for dt in [np.float32, np.float64]: |
| # OpArgMngr.add_workload('inner', np.array(3, dtype=dt)[()], np.array([1, 2], dtype=dt)) |
| # OpArgMngr.add_workload('inner', np.array([1, 2], dtype=dt), np.array(3, dtype=dt)[()]) |
| A = np.array([[1, 2], [3, 4]], dtype=dt) |
| B = np.array([[1, 3], [2, 4]], dtype=dt) |
| C = np.array([1, 1], dtype=dt) |
| OpArgMngr.add_workload('inner', A.T, C) |
| OpArgMngr.add_workload('inner', C, A.T) |
| OpArgMngr.add_workload('inner', B, C) |
| OpArgMngr.add_workload('inner', C, B) |
| OpArgMngr.add_workload('inner', A, B) |
| OpArgMngr.add_workload('inner', A, A) |
| OpArgMngr.add_workload('inner', A, A.copy()) |
| a = np.arange(5).astype(dt) |
| b = a[::-1] |
| OpArgMngr.add_workload('inner', b, a) |
| a = np.arange(24).reshape(2,3,4).astype(dt) |
| b = np.arange(24, 48).reshape(2,3,4).astype(dt) |
| OpArgMngr.add_workload('inner', a, b) |
| OpArgMngr.add_workload('inner', b, a) |
| |
| |
| def _add_workload_insert(): |
| a = np.arange(10) |
| OpArgMngr.add_workload('insert', a, 0, np.array([0])) |
| OpArgMngr.add_workload('insert', a, np.array([], dtype=np.int64), np.array([])) |
| OpArgMngr.add_workload('insert', a, np.array([0, 1], dtype=np.int64), np.array([1, 2])) |
| OpArgMngr.add_workload('insert', a, slice(1, 2), np.array([1, 2])) |
| OpArgMngr.add_workload('insert', a, slice(1, -2, -1), np.array([])) |
| OpArgMngr.add_workload('insert', np.array([0, 1, 2]), np.array([1, 1, 1], dtype=np.int64), np.array([3, 4, 5])) |
| OpArgMngr.add_workload('insert', np.array(1), 0, np.array([0])) |
| |
| |
| def _add_workload_interp(): |
| xp0 = np.linspace(0, 1, 5) |
| fp0 = np.linspace(0, 1, 5) |
| x0 = np.linspace(0, 1, 50) |
| xp1 = np.array([1, 2, 3, 4]) |
| fp1 = np.array([1, 2, _np.inf, 4]) |
| x1 = np.array([1, 2, 2.5, 3, 4]) |
| xp2 = np.arange(0, 10, 0.0001) |
| fp2 = np.sin(xp2) |
| xp3 = np.array([190, -190, 350, -350]) |
| fp3 = np.array([5, 10, 3, 4]) |
| x3 = np.array([-180, -170, -185, 185, -10, -5, 0, 365]) |
| |
| OpArgMngr.add_workload('interp', x0, xp0, fp0) |
| OpArgMngr.add_workload('interp', x1, xp1, fp1) |
| OpArgMngr.add_workload('interp', np.pi, xp2, fp2) |
| OpArgMngr.add_workload('interp', x3, xp3, fp3, period=360) |
| for size in range(1, 10): |
| xp = np.arange(size, dtype=np.float64) |
| fp = np.ones(size, dtype=np.float64) |
| incpts = np.array([-1, 0, size - 1, size], dtype=np.float64) |
| decpts = incpts[::-1] |
| OpArgMngr.add_workload('interp', incpts, xp, fp) |
| OpArgMngr.add_workload('interp', decpts, xp, fp) |
| OpArgMngr.add_workload('interp', incpts, xp, fp, left=0) |
| OpArgMngr.add_workload('interp', decpts, xp, fp, left=0) |
| OpArgMngr.add_workload('interp', incpts, xp, fp, right=2) |
| OpArgMngr.add_workload('interp', decpts, xp, fp, right=2) |
| OpArgMngr.add_workload('interp', incpts, xp, fp, left=0, right=2) |
| OpArgMngr.add_workload('interp', decpts, xp, fp, left=0, right=2) |
| |
| |
| def _add_workload_hypot(): |
| OpArgMngr.add_workload('hypot', np.array(1), np.array(1)) |
| OpArgMngr.add_workload('hypot', np.array(0), np.array(0)) |
| OpArgMngr.add_workload('hypot', np.array(_np.nan), np.array(_np.nan)) |
| OpArgMngr.add_workload('hypot', np.array(_np.nan), np.array(1)) |
| OpArgMngr.add_workload('hypot', np.array(_np.nan), np.array(_np.inf)) |
| OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(_np.nan)) |
| OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(0)) |
| OpArgMngr.add_workload('hypot', np.array(0), np.array(_np.inf)) |
| OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(_np.inf)) |
| OpArgMngr.add_workload('hypot', np.array(_np.inf), np.array(23.0)) |
| |
| |
| def _add_workload_lcm(): |
| OpArgMngr.add_workload('lcm', np.array([12, 120], dtype=np.int8), np.array([20, 200], dtype=np.int8)) |
| OpArgMngr.add_workload('lcm', np.array([12, 120], dtype=np.uint8), np.array([20, 200], dtype=np.uint8)) |
| OpArgMngr.add_workload('lcm', np.array(195225786*2, dtype=np.int32), np.array(195225786*5, dtype=np.int32)) |
| |
| |
| def _add_workload_gcd(): |
| OpArgMngr.add_workload('gcd', np.array([24, 30], dtype=np.int8), np.array([20, 75], dtype=np.int8)) |
| OpArgMngr.add_workload('gcd', np.array([24, 30], dtype=np.uint8), np.array([20, 75], dtype=np.uint8)) |
| OpArgMngr.add_workload('gcd', np.array(195225786*2, dtype=np.int32), np.array(195225786*5, dtype=np.int32)) |
| |
| |
| def _add_workload_bitwise_or(): |
| OpArgMngr.add_workload('bitwise_or', np.array([False, False, True, True], dtype=np.bool), |
| np.array([False, True, False, True], dtype=np.bool)) |
| for dtype in [np.int8, np.int32, np.int64]: |
| zeros = np.array([0], dtype=dtype) |
| ones = np.array([-1], dtype=dtype) |
| OpArgMngr.add_workload('bitwise_or', zeros, zeros) |
| OpArgMngr.add_workload('bitwise_or', ones, zeros) |
| OpArgMngr.add_workload('bitwise_or', zeros, ones) |
| OpArgMngr.add_workload('bitwise_or', ones, ones) |
| |
| |
| def _add_workload_bitwise_and(): |
| OpArgMngr.add_workload('bitwise_and', np.array([False, False, True, True], dtype=np.bool), |
| np.array([False, True, False, True], dtype=np.bool)) |
| for dtype in [np.int8, np.int32, np.int64]: |
| zeros = np.array([0], dtype=dtype) |
| ones = np.array([-1], dtype=dtype) |
| OpArgMngr.add_workload('bitwise_and', zeros, zeros) |
| OpArgMngr.add_workload('bitwise_and', ones, zeros) |
| OpArgMngr.add_workload('bitwise_and', zeros, ones) |
| OpArgMngr.add_workload('bitwise_and', ones, ones) |
| |
| |
| def _add_workload_bitwise_xor(): |
| OpArgMngr.add_workload('bitwise_xor', np.array([False, False, True, True], dtype=np.bool), |
| np.array([False, True, False, True], dtype=np.bool)) |
| for dtype in [np.int8, np.int32, np.int64]: |
| zeros = np.array([0], dtype=dtype) |
| ones = np.array([-1], dtype=dtype) |
| OpArgMngr.add_workload('bitwise_xor', zeros, zeros) |
| OpArgMngr.add_workload('bitwise_xor', ones, zeros) |
| OpArgMngr.add_workload('bitwise_xor', zeros, ones) |
| OpArgMngr.add_workload('bitwise_xor', ones, ones) |
| |
| |
| def _add_workload_bitwise_left_shift(): |
| for dtype in [np.int8, np.int32, np.int64]: |
| twenty = np.array([20], dtype=dtype) |
| three = np.array([3], dtype=dtype) |
| OpArgMngr.add_workload('bitwise_left_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_left_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_left_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_left_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_left_shift', np.array([9223372036854775807], np.int64), np.array([1], np.int64)) |
| OpArgMngr.add_workload('bitwise_left_shift', np.array([-9223372036854775808], np.int64), np.array([1], np.int64)) |
| |
| |
| def _add_workload_bitwise_right_shift(): |
| for dtype in [np.int8, np.int32, np.int64]: |
| twenty = np.array([20], dtype=dtype) |
| three = np.array([3], dtype=dtype) |
| OpArgMngr.add_workload('bitwise_right_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_right_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_right_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_right_shift', twenty, three) |
| OpArgMngr.add_workload('bitwise_right_shift', np.array([9223372036854775807], np.int64), np.array([1], np.int64)) |
| OpArgMngr.add_workload('bitwise_right_shift', np.array([-9223372036854775808], np.int64), np.array([1], np.int64)) |
| |
| |
| def _add_workload_ldexp(): |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float32), np.array(3, np.int8)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(3, np.int8)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float32), np.array(3, np.int32)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(3, np.int32)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float32), np.array(3, np.int64)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(3, np.int64)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(9223372036854775807, np.int64)) |
| OpArgMngr.add_workload('ldexp', np.array(2., np.float64), np.array(-9223372036854775808, np.int64)) |
| |
| |
| def _add_workload_logaddexp(array_pool): |
| OpArgMngr.add_workload('logaddexp', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('logaddexp', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('logaddexp', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('logaddexp', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_subtract(array_pool): |
| OpArgMngr.add_workload('subtract', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('subtract', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('subtract', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('subtract', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_multiply(array_pool): |
| OpArgMngr.add_workload('multiply', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('multiply', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('multiply', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('multiply', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_power(array_pool): |
| OpArgMngr.add_workload('power', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('power', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('power', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('power', array_pool['4x1'], array_pool['1x1x0']) |
| OpArgMngr.add_workload('power', np.array([1, 2, 3], np.int32), 2.00001) |
| OpArgMngr.add_workload('power', np.array([15, 15], np.int64), np.array([15, 15], np.int64)) |
| OpArgMngr.add_workload('power', 0, np.arange(1, 10)) |
| |
| |
| def _add_workload_mod(array_pool): |
| OpArgMngr.add_workload('mod', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('mod', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('mod', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('mod', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_fmod(array_pool): |
| OpArgMngr.add_workload('fmod', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('fmod', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('fmod', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('fmod', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_floor_divide(array_pool): |
| OpArgMngr.add_workload('floor_divide', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('floor_divide', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('floor_divide', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('floor_divide', array_pool['4x1'], array_pool['1x1x0']) |
| OpArgMngr.add_workload('floor_divide', np.array([-1, -2, -3], np.float32), 1.9999) |
| OpArgMngr.add_workload('floor_divide', np.array([1000, -200, -3], np.int64), 3) |
| OpArgMngr.add_workload('floor_divide', np.array([1, -2, -3, 4, -5], np.int32), 2.0001) |
| OpArgMngr.add_workload('floor_divide', np.array([1, -50, -0.2, 40000, 0], np.float64), -7) |
| |
| |
| def _add_workload_remainder(): |
| # test remainder basic |
| OpArgMngr.add_workload('remainder', np.array([0, 1, 2, 4, 2], dtype=np.float16), |
| np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| |
| def _signs(dt): |
| if dt in [np.uint8]: |
| return (+1,) |
| else: |
| return (+1, -1) |
| |
| for ct in _DTYPES: |
| for sg1, sg2 in itertools.product(_signs(ct), _signs(ct)): |
| a = np.array(sg1*71, dtype=ct) |
| b = np.array(sg2*19, dtype=ct) |
| OpArgMngr.add_workload('remainder', a, b) |
| |
| # test remainder exact |
| nlst = list(range(-127, 0)) |
| plst = list(range(1, 128)) |
| dividend = nlst + [0] + plst |
| divisor = nlst + plst |
| arg = list(itertools.product(dividend, divisor)) |
| tgt = list(divmod(*t) for t in arg) |
| a, b = np.array(arg, dtype=int).T |
| # convert exact integer results from Python to float so that |
| # signed zero can be used, it is checked. |
| for dt in [np.float16, np.float32, np.float64]: |
| fa = a.astype(dt) |
| fb = b.astype(dt) |
| OpArgMngr.add_workload('remainder', fa, fb) |
| |
| # test_float_remainder_roundoff |
| for ct in _FLOAT_DTYPES: |
| for sg1, sg2 in itertools.product((+1, -1), (+1, -1)): |
| a = np.array(sg1*78*6e-8, dtype=ct) |
| b = np.array(sg2*6e-8, dtype=ct) |
| OpArgMngr.add_workload('remainder', a, b) |
| |
| # test_float_remainder_corner_cases |
| # Check remainder magnitude. |
| for ct in _FLOAT_DTYPES: |
| b = _np.array(1.0, dtype=ct) |
| a = np.array(_np.nextafter(_np.array(0.0, dtype=ct), -b), dtype=ct) |
| b = np.array(b, dtype=ct) |
| OpArgMngr.add_workload('remainder', a, b) |
| OpArgMngr.add_workload('remainder', -a, -b) |
| |
| # Check nans, inf |
| for ct in [np.float16, np.float32, np.float64]: |
| fone = np.array(1.0, dtype=ct) |
| fzer = np.array(0.0, dtype=ct) |
| finf = np.array(_np.inf, dtype=ct) |
| fnan = np.array(_np.nan, dtype=ct) |
| # OpArgMngr.add_workload('remainder', fone, fzer) # failed |
| OpArgMngr.add_workload('remainder', fone, fnan) |
| OpArgMngr.add_workload('remainder', finf, fone) |
| |
| |
| def _add_workload_maximum(array_pool): |
| OpArgMngr.add_workload('maximum', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('maximum', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('maximum', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('maximum', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_fmax(array_pool): |
| OpArgMngr.add_workload('fmax', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('fmax', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('fmax', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('fmax', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_minimum(array_pool): |
| OpArgMngr.add_workload('minimum', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('minimum', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('minimum', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('minimum', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_fmin(array_pool): |
| OpArgMngr.add_workload('fmin', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('fmin', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('fmin', 2, array_pool['4x1']) |
| OpArgMngr.add_workload('fmin', array_pool['4x1'], array_pool['1x1x0']) |
| |
| |
| def _add_workload_negative(array_pool): |
| OpArgMngr.add_workload('negative', array_pool['4x1']) |
| |
| |
| def _add_workload_absolute(array_pool): |
| OpArgMngr.add_workload('absolute', array_pool['4x1']) |
| |
| |
| def _add_workload_sign(array_pool): |
| OpArgMngr.add_workload('sign', array_pool['4x1']) |
| OpArgMngr.add_workload('sign', np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('sign', np.array([-.1, 0, .1])) |
| # OpArgMngr.add_workload('sign', np.array(_np.array([_np.nan]))) # failed |
| |
| |
| def _add_workload_exp(array_pool): |
| OpArgMngr.add_workload('exp', array_pool['4x1']) |
| |
| |
| def _add_workload_log(array_pool): |
| OpArgMngr.add_workload('log', array_pool['4x1']) |
| |
| |
| def _add_workload_log2(array_pool): |
| OpArgMngr.add_workload('log2', array_pool['4x1']) |
| OpArgMngr.add_workload('log2', np.array(2.**65)) |
| OpArgMngr.add_workload('log2', np.array(_np.inf)) |
| OpArgMngr.add_workload('log2', np.array(1.)) |
| |
| |
| def _add_workload_log1p(): |
| OpArgMngr.add_workload('log1p', np.array(-1.)) |
| OpArgMngr.add_workload('log1p', np.array(_np.inf)) |
| OpArgMngr.add_workload('log1p', np.array(1e-6)) |
| |
| |
| def _add_workload_log10(array_pool): |
| OpArgMngr.add_workload('log10', array_pool['4x1']) |
| |
| |
| def _add_workload_sqrt(): |
| OpArgMngr.add_workload('sqrt', np.array([1, np.PZERO, np.NZERO, _np.inf, _np.nan])) |
| |
| |
| def _add_workload_square(): |
| OpArgMngr.add_workload('square', np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| |
| |
| def _add_workload_cbrt(): |
| OpArgMngr.add_workload('cbrt', np.array(-2.5**3, dtype=np.float32)) |
| OpArgMngr.add_workload('cbrt', np.array([1., 2., -3., _np.inf, -_np.inf])**3) |
| OpArgMngr.add_workload('cbrt', np.array([_np.inf, -_np.inf, _np.nan])) |
| |
| |
| def _add_workload_reciprocal(): |
| for ctype in [np.float16, np.float32, np.float64]: |
| OpArgMngr.add_workload('reciprocal', np.array([-2, 5, 1, 4, 3], dtype=ctype)) |
| OpArgMngr.add_workload('reciprocal', np.array([-2, 0, 1, 0, 3], dtype=ctype)) |
| OpArgMngr.add_workload('reciprocal', np.array([0], dtype=ctype)) |
| |
| |
| def _add_workload_sin(array_pool): |
| OpArgMngr.add_workload('sin', array_pool['4x1']) |
| |
| |
| def _add_workload_cos(array_pool): |
| OpArgMngr.add_workload('cos', array_pool['4x1']) |
| |
| |
| def _add_workload_tan(array_pool): |
| OpArgMngr.add_workload('tan', array_pool['4x1']) |
| |
| |
| def _add_workload_sinh(array_pool): |
| OpArgMngr.add_workload('sinh', array_pool['4x1']) |
| |
| |
| def _add_workload_cosh(array_pool): |
| OpArgMngr.add_workload('cosh', array_pool['4x1']) |
| |
| |
| def _add_workload_tanh(array_pool): |
| OpArgMngr.add_workload('tanh', array_pool['4x1']) |
| |
| |
| def _add_workload_arcsin(array_pool): |
| OpArgMngr.add_workload('arcsin', array_pool['4x1'] - 2) |
| |
| |
| def _add_workload_arccos(array_pool): |
| OpArgMngr.add_workload('arccos', array_pool['4x1'] - 2) |
| |
| |
| def _add_workload_arctan(array_pool): |
| OpArgMngr.add_workload('arctan', array_pool['4x1']) |
| |
| |
| def _add_workload_arcsinh(array_pool): |
| OpArgMngr.add_workload('arcsinh', array_pool['4x1']) |
| |
| |
| def _add_workload_arccosh(array_pool): |
| OpArgMngr.add_workload('arccosh', array_pool['4x1']) |
| |
| |
| def _add_workload_arctanh(array_pool): |
| OpArgMngr.add_workload('arctanh', array_pool['4x1'] - 2) |
| |
| |
| def _add_workload_ceil(array_pool): |
| OpArgMngr.add_workload('ceil', array_pool['4x1']) |
| |
| |
| def _add_workload_turnc(array_pool): |
| OpArgMngr.add_workload('trunc', array_pool['4x1']) |
| |
| |
| def _add_workload_floor(array_pool): |
| OpArgMngr.add_workload('floor', array_pool['4x1']) |
| |
| |
| def _add_workload_logical_not(array_pool): |
| OpArgMngr.add_workload('logical_not', np.ones(10, dtype=np.int32)) |
| OpArgMngr.add_workload('logical_not', array_pool['4x1']) |
| OpArgMngr.add_workload('logical_not', np.array([True, False, True, False], dtype=np.bool)) |
| |
| |
| def _add_workload_bitwise_not(): |
| OpArgMngr.add_workload('bitwise_not', np.array([True, False, True, False], dtype=np.bool)) |
| for dtype in [np.int8, np.int32, np.int64]: |
| zeros = np.array([0], dtype=dtype) |
| ones = np.array([-1], dtype=dtype) |
| OpArgMngr.add_workload('bitwise_not', zeros) |
| OpArgMngr.add_workload('bitwise_not', ones) |
| |
| |
| def _add_workload_invert(): |
| OpArgMngr.add_workload('invert', np.array([True, False, True, False], dtype=np.bool)) |
| for dtype in [np.int8, np.int32, np.int64]: |
| zeros = np.array([0], dtype=dtype) |
| ones = np.array([-1], dtype=dtype) |
| OpArgMngr.add_workload('invert', zeros) |
| OpArgMngr.add_workload('invert', ones) |
| |
| |
| def _add_workload_vdot(): |
| OpArgMngr.add_workload('vdot', np.random.normal(size=(2, 4)), np.random.normal(size=(4, 2))) |
| OpArgMngr.add_workload('vdot', np.random.normal(size=(2, 4)).astype(np.float64), np.random.normal(size=(2, 4)).astype(np.float64)) |
| |
| |
| def _add_workload_matmul(): |
| OpArgMngr.add_workload('matmul', np.random.normal(size=(2, 4)), np.random.normal(size=(4, 2))) |
| dtype = [np.float32, np.float64] |
| def test_shapes(): |
| dims = [((1, 1), (2, 1, 1)), # broadcast first argument |
| ((2, 1, 1), (1, 1)), # broadcast second argument |
| ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match |
| ] |
| for dt, (dm1, dm2) in itertools.product(dtype, dims): |
| a = np.ones(dm1, dtype=dt) |
| b = np.ones(dm2, dtype=dt) |
| OpArgMngr.add_workload('matmul', a, b) |
| # vector vector returns scalars. |
| for dt in dtype: |
| a = np.ones((2,), dtype=dt) |
| b = np.ones((2,), dtype=dt) |
| OpArgMngr.add_workload('matmul', a, b) |
| |
| def test_result_types(): |
| mat = np.ones((1,1)) |
| vec = np.ones((1,)) |
| for dt in dtype: |
| m = mat.astype(dt) |
| v = vec.astype(dt) |
| for arg in [(m, v), (v, m), (m, m)]: |
| OpArgMngr.add_workload('matmul', *arg) |
| |
| def test_scalar_output(): |
| vec1 = np.array([2]) |
| vec2 = np.array([3, 4]).reshape(1, -1) |
| for dt in dtype: |
| v1 = vec1.astype(dt) |
| v2 = vec2.astype(dt) |
| OpArgMngr.add_workload('matmul', v1, v2) |
| OpArgMngr.add_workload('matmul', v2.T, v1) |
| |
| def test_vector_vector_values(): |
| vec1 = np.array([1, 2]) |
| vec2 = np.array([3, 4]).reshape(-1, 1) |
| for dt in dtype: |
| v1 = vec1.astype(dt) |
| v2 = vec2.astype(dt) |
| OpArgMngr.add_workload('matmul', v1, v2) |
| # no broadcast, we must make v1 into a 2d ndarray |
| OpArgMngr.add_workload('matmul', v2, v1.reshape(1, -1)) |
| |
| def test_vector_matrix_values(): |
| vec = np.array([1, 2]) |
| mat1 = np.array([[1, 2], [3, 4]]) |
| mat2 = np.stack([mat1]*2, axis=0) |
| for dt in dtype: |
| v = vec.astype(dt) |
| m1 = mat1.astype(dt) |
| m2 = mat2.astype(dt) |
| OpArgMngr.add_workload('matmul', v, m1) |
| OpArgMngr.add_workload('matmul', v, m2) |
| |
| def test_matrix_vector_values(): |
| vec = np.array([1, 2]) |
| mat1 = np.array([[1, 2], [3, 4]]) |
| mat2 = np.stack([mat1]*2, axis=0) |
| for dt in dtype: |
| v = vec.astype(dt) |
| m1 = mat1.astype(dt) |
| m2 = mat2.astype(dt) |
| OpArgMngr.add_workload('matmul', m1, v) |
| OpArgMngr.add_workload('matmul', m2, v) |
| |
| def test_matrix_matrix_values(): |
| mat1 = np.array([[1, 2], [3, 4]]) |
| mat2 = np.array([[1, 0], [1, 1]]) |
| mat12 = np.stack([mat1, mat2], axis=0) |
| mat21 = np.stack([mat2, mat1], axis=0) |
| for dt in dtype: |
| m1 = mat1.astype(dt) |
| m2 = mat2.astype(dt) |
| m12 = mat12.astype(dt) |
| m21 = mat21.astype(dt) |
| # matrix @ matrix |
| OpArgMngr.add_workload('matmul', m1, m2) |
| OpArgMngr.add_workload('matmul', m2, m1) |
| # stacked @ matrix |
| OpArgMngr.add_workload('matmul', m12, m1) |
| # matrix @ stacked |
| OpArgMngr.add_workload('matmul', m1, m12) |
| # stacked @ stacked |
| OpArgMngr.add_workload('matmul', m12, m21) |
| |
| test_shapes() |
| test_result_types() |
| test_scalar_output() |
| test_vector_vector_values() |
| test_vector_matrix_values() |
| test_matrix_vector_values() |
| test_matrix_matrix_values() |
| |
| |
| def _add_workload_vstack(array_pool): |
| OpArgMngr.add_workload('vstack', (array_pool['4x1'], np.random.uniform(size=(5, 1)))) |
| OpArgMngr.add_workload('vstack', array_pool['4x1']) |
| OpArgMngr.add_workload('vstack', array_pool['1x1x0']) |
| |
| |
| def _add_workload_column_stack(): |
| OpArgMngr.add_workload('column_stack', (np.array([1, 2, 3]), np.array([2, 3, 4]))) |
| OpArgMngr.add_workload('column_stack', (np.array([[1], [2], [3]]), np.array([[2], [3], [4]]))) |
| OpArgMngr.add_workload('column_stack', [np.array(_np.arange(3)) for _ in range(2)]) |
| |
| |
| def _add_workload_hstack(array_pool): |
| OpArgMngr.add_workload('hstack', (np.random.uniform(size=(1, 4)), np.random.uniform(size=(1, 4)))) |
| OpArgMngr.add_workload('hstack', array_pool['4x1']) |
| OpArgMngr.add_workload('hstack', array_pool['1x1x0']) |
| |
| |
| def _add_workload_dstack(array_pool): |
| OpArgMngr.add_workload('dstack', (np.random.uniform(size=(5, 1, 2)), np.random.uniform(size=(5, 1, 3)))) |
| OpArgMngr.add_workload('dstack', array_pool['4x1']) |
| OpArgMngr.add_workload('dstack', array_pool['1x1x0']) |
| |
| |
| def _add_workload_equal(array_pool): |
| # TODO(junwu): fp16 does not work yet with TVM generated ops |
| # OpArgMngr.add_workload('equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| # TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan |
| # OpArgMngr.add_workload('equal', np.array([_np.nan]), np.array([_np.nan])) |
| OpArgMngr.add_workload('equal', array_pool['4x1'], array_pool['1x2']) |
| |
| |
| def _add_workload_not_equal(array_pool): |
| # TODO(junwu): fp16 does not work yet with TVM generated ops |
| # OpArgMngr.add_workload('not_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('not_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| # TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan |
| # OpArgMngr.add_workload('not_equal', np.array([_np.nan]), np.array([_np.nan])) |
| OpArgMngr.add_workload('not_equal', array_pool['4x1'], array_pool['1x2']) |
| |
| |
| def _add_workload_greater(array_pool): |
| # TODO(junwu): fp16 does not work yet with TVM generated ops |
| # OpArgMngr.add_workload('greater', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('greater', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| OpArgMngr.add_workload('greater', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('greater', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('greater', 2, array_pool['4x1']) |
| # TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan |
| # OpArgMngr.add_workload('greater', np.array([_np.nan]), np.array([_np.nan])) |
| |
| |
| def _add_workload_greater_equal(array_pool): |
| # TODO(junwu): fp16 does not work yet with TVM generated ops |
| # OpArgMngr.add_workload('greater_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('greater_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| OpArgMngr.add_workload('greater_equal', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('greater_equal', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('greater_equal', 2, array_pool['4x1']) |
| # TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan |
| # OpArgMngr.add_workload('greater_equal', np.array([_np.nan]), np.array([_np.nan])) |
| |
| |
| def _add_workload_less(array_pool): |
| # TODO(junwu): fp16 does not work yet with TVM generated ops |
| # OpArgMngr.add_workload('less', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('less', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| OpArgMngr.add_workload('less', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('less', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('less', 2, array_pool['4x1']) |
| # TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan |
| # OpArgMngr.add_workload('less', np.array([_np.nan]), np.array([_np.nan])) |
| |
| |
| def _add_workload_less_equal(array_pool): |
| # TODO(junwu): fp16 does not work yet with TVM generated ops |
| # OpArgMngr.add_workload('less_equal', np.array([0, 1, 2, 4, 2], dtype=np.float16), np.array([-2, 5, 1, 4, 3], dtype=np.float16)) |
| OpArgMngr.add_workload('less_equal', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| OpArgMngr.add_workload('less_equal', array_pool['4x1'], array_pool['1x2']) |
| OpArgMngr.add_workload('less_equal', array_pool['4x1'], 2) |
| OpArgMngr.add_workload('less_equal', 2, array_pool['4x1']) |
| # TODO(junwu): mxnet currently does not have a consistent behavior as NumPy in dealing with _np.nan |
| # OpArgMngr.add_workload('less_equal', np.array([_np.nan]), np.array([_np.nan])) |
| |
| |
| def _add_workload_logical_and(array_pool): |
| OpArgMngr.add_workload('logical_and', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| OpArgMngr.add_workload('logical_and', np.array([False, False, True, True], dtype=np.bool), |
| np.array([False, True, False, True], dtype=np.bool)) |
| |
| def _add_workload_logical_or(array_pool): |
| OpArgMngr.add_workload('logical_or', np.array([0, 1, 2, 4, 2], dtype=np.bool), np.array([-2, 5, 1, 4, 3], dtype=np.bool)) |
| OpArgMngr.add_workload('logical_or', np.array([False, False, True, True], dtype=np.bool), |
| np.array([False, True, False, True], dtype=np.bool)) |
| |
| |
| def _add_workload_logical_xor(array_pool): |
| OpArgMngr.add_workload('logical_xor', np.array([0, 1, 2, 4, 2], dtype=np.float32), np.array([-2, 5, 1, 4, 3], dtype=np.float32)) |
| OpArgMngr.add_workload('logical_xor', np.array([False, False, True, True], dtype=np.bool), |
| np.array([False, True, False, True], dtype=np.bool)) |
| |
| |
| def _add_workload_where(): |
| c = np.ones(53).astype(bool) |
| d = np.ones_like(c) |
| e = np.zeros_like(c) |
| OpArgMngr.add_workload('where', c, e, e) |
| OpArgMngr.add_workload('where', c, d, e) |
| OpArgMngr.add_workload('where', c, d, e[0]) |
| OpArgMngr.add_workload('where', c, d[0], e) |
| # OpArgMngr.add_workload('where', c[::2], d[::2], e[::2]) |
| # OpArgMngr.add_workload('where', c[1::2], d[1::2], e[1::2]) |
| # OpArgMngr.add_workload('where', c[::3], d[::3], e[::3]) |
| # OpArgMngr.add_workload('where', c[1::3], d[1::3], e[1::3]) |
| # OpArgMngr.add_workload('where', c[::-2], d[::-2], e[::-2]) |
| # OpArgMngr.add_workload('where', c[::-3], d[::-3], e[::-3]) |
| # OpArgMngr.add_workload('where', c[1::-3], d[1::-3], e[1::-3]) |
| c = np.array([True, False]) |
| a = np.zeros((2, 25)) |
| b = np.ones((2, 25)) |
| OpArgMngr.add_workload('where', c.reshape((2, 1)), a, b) |
| OpArgMngr.add_workload('where', c, a.T, b.T) |
| |
| |
| def _add_workload_pad(): |
| array = _np.array([[1, 2, 3], [1, 2, 3]]) |
| pad_width = ((5, 5), (5,5)) |
| array = np.array(array) |
| OpArgMngr.add_workload('pad', array, pad_width, mode="constant", constant_values=0) |
| OpArgMngr.add_workload('pad', array, pad_width, mode="edge") |
| OpArgMngr.add_workload('pad', array, pad_width, mode="symmetric", reflect_type="even") |
| OpArgMngr.add_workload('pad', array, pad_width, mode="reflect", reflect_type="even") |
| OpArgMngr.add_workload('pad', array, pad_width, mode="maximum") |
| OpArgMngr.add_workload('pad', array, pad_width, mode="minimum") |
| |
| |
| def _add_workload_nonzero(): |
| OpArgMngr.add_workload('nonzero', np.random.randint(0, 2)) |
| OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=())) |
| OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=(0, 1, 2))) |
| OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=(0, 1, 0))) |
| OpArgMngr.add_workload('nonzero', np.random.randint(0, 2, size=(2, 3, 4))) |
| OpArgMngr.add_workload('nonzero', np.array([False, False, False], dtype=np.bool_)) |
| OpArgMngr.add_workload('nonzero', np.array([True, False, False], dtype=np.bool_)) |
| |
| |
| def _add_workload_diagflat(): |
| def get_mat(n): |
| data = _np.arange(n) |
| data = _np.add.outer(data,data) |
| return data |
| |
| A = np.array([[1,2],[3,4],[5,6]]) |
| vals = (100 * np.arange(5)).astype('l') |
| vals_c = (100 * np.array(get_mat(5)) + 1).astype('l') |
| vals_f = _np.array((100 * get_mat(5) + 1), order='F', dtype='l') |
| vals_f = np.array(vals_f) |
| |
| OpArgMngr.add_workload('diagflat', A, k=2) |
| OpArgMngr.add_workload('diagflat', A, k=1) |
| OpArgMngr.add_workload('diagflat', A, k=0) |
| OpArgMngr.add_workload('diagflat', A, k=-1) |
| OpArgMngr.add_workload('diagflat', A, k=-2) |
| OpArgMngr.add_workload('diagflat', A, k=-3) |
| OpArgMngr.add_workload('diagflat', vals, k=0) |
| OpArgMngr.add_workload('diagflat', vals, k=2) |
| OpArgMngr.add_workload('diagflat', vals, k=-2) |
| OpArgMngr.add_workload('diagflat', vals_c, k=0) |
| OpArgMngr.add_workload('diagflat', vals_c, k=2) |
| OpArgMngr.add_workload('diagflat', vals_c, k=-2) |
| OpArgMngr.add_workload('diagflat', vals_f, k=0) |
| OpArgMngr.add_workload('diagflat', vals_f, k=2) |
| OpArgMngr.add_workload('diagflat', vals_f, k=-2) |
| |
| |
| def _add_workload_shape(): |
| OpArgMngr.add_workload('shape', np.random.uniform(size=())) |
| OpArgMngr.add_workload('shape', np.random.uniform(size=(0, 1))) |
| OpArgMngr.add_workload('shape', np.random.uniform(size=(2, 3))) |
| |
| |
| def _add_workload_diff(): |
| x = np.array([1, 4, 6, 7, 12]) |
| OpArgMngr.add_workload('diff', x) |
| OpArgMngr.add_workload('diff', x, 2) |
| OpArgMngr.add_workload('diff', x, 3) |
| OpArgMngr.add_workload('diff', np.array([1.1, 2.2, 3.0, -0.2, -0.1])) |
| x = np.zeros((10, 20, 30)) |
| x[:, 1::2, :] = 1 |
| OpArgMngr.add_workload('diff', x) |
| OpArgMngr.add_workload('diff', x, axis=-1) |
| OpArgMngr.add_workload('diff', x, axis=0) |
| OpArgMngr.add_workload('diff', x, axis=1) |
| OpArgMngr.add_workload('diff', x, axis=-2) |
| x = 20 * np.random.uniform(size=(10,20,30)) |
| OpArgMngr.add_workload('diff', x) |
| OpArgMngr.add_workload('diff', x, n=2) |
| OpArgMngr.add_workload('diff', x, axis=0) |
| OpArgMngr.add_workload('diff', x, n=2, axis=0) |
| x = np.array([list(range(3))]) |
| for n in range(1, 5): |
| OpArgMngr.add_workload('diff', x, n=n) |
| |
| |
| def _add_workload_ediff1d(): |
| x = np.array([1, 3, 6, 7, 1]) |
| OpArgMngr.add_workload('ediff1d', x) |
| OpArgMngr.add_workload('ediff1d', x, 2, 4) |
| OpArgMngr.add_workload('ediff1d', x, x, 3) |
| OpArgMngr.add_workload('ediff1d', x, x, x) |
| OpArgMngr.add_workload('ediff1d', np.array([1.1, 2.2, 3.0, -0.2, -0.1])) |
| x = np.random.randint(5, size=(5, 0, 4)) |
| OpArgMngr.add_workload('ediff1d', x) |
| OpArgMngr.add_workload('ediff1d', x, 2, 4) |
| OpArgMngr.add_workload('ediff1d', x, x, 3) |
| OpArgMngr.add_workload('ediff1d', x, x, x) |
| |
| def _add_workload_resize(): |
| OpArgMngr.add_workload('resize', np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.int32), (5, 1)) |
| OpArgMngr.add_workload('resize', np.eye(3), 3) |
| OpArgMngr.add_workload('resize', np.ones(1), ()) |
| OpArgMngr.add_workload('resize', np.ones(()), (1,)) |
| OpArgMngr.add_workload('resize', np.eye(3), (3, 2, 1)) |
| OpArgMngr.add_workload('resize', np.eye(3), (2, 3, 3)) |
| OpArgMngr.add_workload('resize', np.ones(10), 15) |
| OpArgMngr.add_workload('resize', np.zeros((10, 0)), (0, 10)) |
| OpArgMngr.add_workload('resize', np.zeros((10, 0)), (0, 100)) |
| |
| |
| def _add_workload_empty_like(): |
| OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(1,3,4), dtype='float64')) |
| OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(9,3,1)), np.int32) |
| OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(9,3)), 'float32') |
| OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(9,3,1)), np.bool_) |
| OpArgMngr.add_workload('empty_like', np.random.uniform(low=0, high=100, size=(0,3)), np.float32) |
| |
| |
| def _add_workload_nan_to_num(): |
| array1 = np.array([[-433, 0, 456, _np.inf], [-1, -_np.inf, 0, 1]]) |
| array2 = np.array([_np.nan, _np.inf, -_np.inf, -574, 0, 23425, 24234,-5]) |
| array3 = np.array(-_np.inf) |
| OpArgMngr.add_workload('nan_to_num', array1, True, 0, 100, -100) |
| OpArgMngr.add_workload('nan_to_num', array1, True, 0.00) |
| OpArgMngr.add_workload('nan_to_num', array2, True) |
| OpArgMngr.add_workload('nan_to_num', array2, True, -2000, 10000, -10000) |
| OpArgMngr.add_workload('nan_to_num', array3, True) |
| |
| |
| def _add_workload_isnan(array_pool): |
| OpArgMngr.add_workload('isnan', array_pool['2x4']) |
| |
| |
| def _add_workload_isinf(array_pool): |
| OpArgMngr.add_workload('isinf', array_pool['2x4']) |
| |
| |
| def _add_workload_isposinf(array_pool): |
| OpArgMngr.add_workload('isposinf', array_pool['2x4']) |
| |
| |
| def _add_workload_isneginf(array_pool): |
| OpArgMngr.add_workload('isneginf', array_pool['2x4']) |
| |
| |
| def _add_workload_isfinite(array_pool): |
| OpArgMngr.add_workload('isfinite', array_pool['2x4']) |
| |
| |
| def _add_workload_polyval(): |
| p1 = np.arange(20) |
| p2 = np.arange(1) |
| x1 = np.arange(20) |
| x2 = np.ones((3,3)) |
| x3 = np.array(2) |
| OpArgMngr.add_workload('polyval', p1, x1) |
| OpArgMngr.add_workload('polyval', p1, x2) |
| OpArgMngr.add_workload('polyval', p1, x3) |
| OpArgMngr.add_workload('polyval', p2, x1) |
| OpArgMngr.add_workload('polyval', p2, x2) |
| OpArgMngr.add_workload('polyval', p2, x3) |
| |
| |
| def _add_workload_linalg_cond(): |
| A = np.array([[1., 0, 1], [0, -2., 0], [0, 0, 3.]]) |
| OpArgMngr.add_workload('linalg.cond', A, _np.inf) |
| OpArgMngr.add_workload('linalg.cond', A, -_np.inf) |
| OpArgMngr.add_workload('linalg.cond', A, 1) |
| OpArgMngr.add_workload('linalg.cond', A, -1) |
| OpArgMngr.add_workload('linalg.cond', A, 'fro') |
| |
| |
| def _add_workload_linalg_matrix_power(): |
| i = np.array([[0, 1], [-1, 0]]) |
| OpArgMngr.add_workload('linalg.matrix_power', i, 3) |
| |
| |
| def _add_workload_linalg_matrix_rank(): |
| shapes = [ |
| ((4, 3), ()), |
| ((4, 3), (1,)), |
| ((4, 3), (2, 3,)), |
| ((2, 1, 1), (1,)), |
| ((2, 3, 3), (2,)), |
| ((2, 3, 1, 1), ()), |
| ((2, 3, 4, 4), (1, 3)), |
| ((2, 3, 4, 5), (2, 3)), |
| ((2, 3, 5, 4), (2, 3)), |
| ] |
| dtypes = (np.float32, np.float64) |
| for dtype in dtypes: |
| for a_shape, tol_shape in shapes: |
| for tol_is_none in [True, False]: |
| a_np = _np.asarray(_np.random.uniform(-10., 10., a_shape)) |
| a = np.array(a_np, dtype=dtype) |
| if tol_is_none: |
| OpArgMngr.add_workload('linalg.matrix_rank', a, None, False) |
| else: |
| tol_np = _np.random.uniform(10., 20., tol_shape) |
| tol = np.array(tol_np, dtype=dtype) |
| OpArgMngr.add_workload('linalg.matrix_rank', a, tol, False) |
| |
| |
| def _add_workload_linalg_multi_dot(): |
| E = np.ones((4,6,6)) |
| F = np.ones((6,6)) |
| OpArgMngr.add_workload('linalg.multi_dot', E) |
| OpArgMngr.add_workload('linalg.multi_dot', [F,F]) |
| |
| |
| def _add_workload_heaviside(): |
| x = np.array([[-30.0, -0.1, 0.0, 0.2], [7.5, _np.nan, _np.inf, -_np.inf]], dtype=np.float64) |
| OpArgMngr.add_workload('heaviside', x, 0.5) |
| OpArgMngr.add_workload('heaviside', x, 1.0) |
| |
| x = x.astype(np.float32) |
| OpArgMngr.add_workload('heaviside', x, _np.float32(0.5)) |
| OpArgMngr.add_workload('heaviside', x, _np.float32(1.0)) |
| |
| |
| def _add_workload_spacing(): |
| OpArgMngr.add_workload('spacing', _np.float64(1)) |
| OpArgMngr.add_workload('spacing', _np.float32(1)) |
| OpArgMngr.add_workload('spacing', _np.inf) |
| OpArgMngr.add_workload('spacing', -_np.inf) |
| OpArgMngr.add_workload('spacing', _np.float64(1e30)) |
| OpArgMngr.add_workload('spacing', _np.float32(1e30)) |
| |
| |
| def _add_workload_allclose(): |
| a = np.random.randn(10) |
| b = a + np.random.rand(10) * 1e-6 |
| c = [1e10,1e-7] |
| d = [1.00001e10,1e10,1e-7] |
| OpArgMngr.add_workload('allclose', a, b) |
| # OpArgMngr.add_workload('allclose', c, d) |
| |
| |
| def _add_workload_alltrue(): |
| for i in range(256-7): |
| e = np.array([True] * 256, dtype=bool)[7::] |
| e[i] = False |
| OpArgMngr.add_workload('alltrue', e) |
| # big array test for blocked libc loops |
| for i in list(range(9, 6000, 507)) + [7764, 90021, -10]: |
| e = np.array([True] * 100043, dtype=bool) |
| e[i] = False |
| OpArgMngr.add_workload('alltrue', e) |
| |
| |
| def _add_workload_apply_along_axis(): |
| def double(row): |
| return row * 2 |
| |
| m = np.array([[0, 1], [2, 3]], dtype=np.int32) |
| OpArgMngr.add_workload('apply_along_axis', double, 0, m) |
| OpArgMngr.add_workload('apply_along_axis', double, 1, m) |
| |
| |
| def _add_workload_apply_over_axes(): |
| a = np.arange(24).reshape(2, 3, 4) |
| OpArgMngr.add_workload('apply_over_axes', _np.sum, a, [0, 2]) |
| |
| |
| def _add_workload_argpartition(): |
| # TODO: move more test cases from numpy to here |
| OpArgMngr.add_workload('argpartition', np.array([]), 0, kind='introselect') |
| OpArgMngr.add_workload('argpartition', np.ones(1), 0, kind='introselect') |
| for r in ([2, 1], [1, 2], [1, 1], [3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], |
| [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): |
| d = np.array(r) |
| OpArgMngr.add_workload('argpartition', d, 0, kind='introselect') |
| |
| |
| def _add_workload_argwhere(): |
| a = np.arange(6).reshape((2, 3)) |
| b = np.array([4, 0, 2, 1, 3]) |
| OpArgMngr.add_workload('argwhere', a>1) |
| OpArgMngr.add_workload('argwhere', b) |
| |
| |
| def _add_workload_array_equal(): |
| a = np.array([1, 2]) |
| b = np.array([1, 2, 3]) |
| c = np.array([3, 4]) |
| d = np.array([1, 3]) |
| OpArgMngr.add_workload('array_equal', a, a) |
| OpArgMngr.add_workload('array_equal', a, b) |
| OpArgMngr.add_workload('array_equal', a, c) |
| OpArgMngr.add_workload('array_equal', a, d) |
| |
| |
| def _add_workload_array_equiv(): |
| a = np.array([1, 2]) |
| b = np.array([1, 2, 3]) |
| c = np.array([3, 4]) |
| d = np.array([1, 3]) |
| e = np.array([2]) |
| f = np.array([[1], [2]]) |
| g = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]]) |
| OpArgMngr.add_workload('array_equiv', a, a) |
| OpArgMngr.add_workload('array_equiv', a, b) |
| OpArgMngr.add_workload('array_equiv', a, c) |
| OpArgMngr.add_workload('array_equiv', a, d) |
| OpArgMngr.add_workload('array_equiv', a, e) |
| OpArgMngr.add_workload('array_equiv', a, f) |
| OpArgMngr.add_workload('array_equiv', a, g) |
| |
| |
| def _add_workload_choose(): |
| a = np.array([[1, 0, 1], [0, 1, 0], [1, 0, 1]], dtype=np.int64) |
| choices = np.array([-10, 10]) |
| OpArgMngr.add_workload('choose', a, choices) |
| |
| |
| def _add_workload_compress(): |
| a = np.array([[1, 2], [3, 4], [5, 6]]) |
| b = np.array([0, 1]) |
| c = np.array([False, True, True]) |
| d = np.array([False, True]) |
| OpArgMngr.add_workload('compress', b, a, axis=0) |
| OpArgMngr.add_workload('compress', c, a, axis=0) |
| OpArgMngr.add_workload('compress', d, a, axis=1) |
| |
| |
| def _add_workload_corrcoef(): |
| a = np.array([0, 1, 0]) |
| b = np.array([1, 0, 1]) |
| c = np.array( |
| [[0.15391142, 0.18045767, 0.14197213], |
| [0.70461506, 0.96474128, 0.27906989], |
| [0.9297531, 0.32296769, 0.19267156]]) |
| OpArgMngr.add_workload('corrcoef', a, b) |
| OpArgMngr.add_workload('corrcoef', c) |
| |
| |
| def _add_workload_correlate(): |
| x = np.array([1, 2, 3, 4, 5]) |
| xs = np.arange(1, 20)[::3] |
| y = np.array([-1, -2, -3]) |
| OpArgMngr.add_workload('correlate', x, y) |
| OpArgMngr.add_workload('correlate', x, y, 'full') |
| OpArgMngr.add_workload('correlate', x, y[:-1], 'full') |
| OpArgMngr.add_workload('correlate', x[::-1], y, 'full') |
| OpArgMngr.add_workload('correlate', xs, y, 'full') |
| OpArgMngr.add_workload('correlate', x, y,"same") |
| |
| |
| def _add_workload_count_nonzero(): |
| m = np.array([[0, 1, 7, 0, 0], [3, 0, 0, 2, 19]]) |
| a = np.array([]) |
| b = np.eye(3) |
| OpArgMngr.add_workload('count_nonzero', m, axis=0) |
| OpArgMngr.add_workload('count_nonzero', m, axis=1) |
| OpArgMngr.add_workload('count_nonzero', a) |
| OpArgMngr.add_workload('count_nonzero', b) |
| |
| |
| def _add_workload_cov(): |
| x = np.array(np.random.rand(12)) |
| y = x.reshape(3, 4) |
| OpArgMngr.add_workload('cov', x) |
| OpArgMngr.add_workload('cov', x, rowvar=False) |
| OpArgMngr.add_workload('cov', x, rowvar=False, bias=True) |
| OpArgMngr.add_workload('cov', y) |
| OpArgMngr.add_workload('cov', y, y[::-1]) |
| OpArgMngr.add_workload('cov', y, rowvar=False) |
| OpArgMngr.add_workload('cov', y, rowvar=False, bias=True) |
| |
| |
| def _add_workload_cumprod(): |
| a = np.array([[1, 2], [3, 5]]) |
| OpArgMngr.add_workload('cumprod', a) |
| OpArgMngr.add_workload('cumprod', a, axis=0) |
| OpArgMngr.add_workload('cumprod', a, axis=1) |
| |
| |
| def _add_workload_digitize(): |
| a = np.array([1, 2, 3, 4]) |
| b = np.array([1, 3]) |
| c = np.array([0, 1, 2, 3, 4]) |
| e = [1, 3] |
| OpArgMngr.add_workload('digitize', a, b) |
| OpArgMngr.add_workload('digitize', b, c) |
| OpArgMngr.add_workload('digitize', a, e) |
| |
| |
| def _add_workload_divmod(): |
| a = [0., 1., 2., 3., 4.] |
| OpArgMngr.add_workload('divmod', a, 3) |
| |
| |
| def _add_workload_extract(): |
| arr = np.arange(12).reshape((3, 4)) |
| condition = np.array([[ True, False, False, True], # np.mod(arr, 3)==0 |
| [False, False, True, False], |
| [False, True, False, False]]) |
| OpArgMngr.add_workload('extract', condition, arr) |
| |
| |
| def _add_workload_flatnonzero(array_pool): |
| x = np.array([-2, -1, 0, 1, 2]) |
| OpArgMngr.add_workload('flatnonzero', array_pool['4x1']) |
| OpArgMngr.add_workload('flatnonzero', array_pool['1x2']) |
| OpArgMngr.add_workload('flatnonzero', x) |
| |
| |
| def _add_workload_float_power(): |
| x1 = np.array([1, 2, 3, 4, 5, 6]) |
| x2 = np.array([1.0, 2.0, 3.0, 3.0, 2.0, 1.0]) |
| x3 = np.array([[1, 2, 3, 3, 2, 1], [1, 2, 3, 3, 2, 1]]) |
| OpArgMngr.add_workload('float_power', x1, 3) |
| OpArgMngr.add_workload('float_power', x1, x2) |
| OpArgMngr.add_workload('float_power', x1, x3) |
| |
| |
| def _add_workload_frexp(): |
| x = np.arange(9) |
| OpArgMngr.add_workload('frexp', x) |
| |
| |
| def _add_workload_histogram2d(): |
| x = np.array([0.41702200, 0.72032449, 1.1437481e-4, 0.302332573, 0.146755891]) |
| y = np.array([0.09233859, 0.18626021, 0.34556073, 0.39676747, 0.53881673]) |
| xedges = np.linspace(0, 1, 10) |
| yedges = np.linspace(0, 1, 10) |
| OpArgMngr.add_workload('histogram2d', x, y, (xedges, yedges)) |
| OpArgMngr.add_workload('histogram2d', x, y, xedges) |
| OpArgMngr.add_workload('histogram2d', list(range(10)), list(range(10))) |
| |
| |
| def _add_workload_histogram_bin_edges(): |
| a = [1, 2, 3, 4] |
| b = [1, 2] |
| arr = np.array([0., 0., 0., 1., 2., 3., 3., 4., 5.]) |
| # OpArgMngr.add_workload('histogram_bin_edges', a, b) |
| OpArgMngr.add_workload('histogram_bin_edges', arr, bins=30, range=(-0.5, 5)) |
| OpArgMngr.add_workload('histogram_bin_edges', arr, bins='auto', range=(0, 1)) |
| |
| |
| def _add_workload_histogramdd(): |
| x = np.array([[-.5, .5, 1.5], [-.5, 1.5, 2.5], [-.5, 2.5, .5], |
| [.5, .5, 1.5], [.5, 1.5, 2.5], [.5, 2.5, 2.5]]) |
| ed = [[-2, 0, 2], [0, 1, 2, 3], [0, 1, 2, 3]] |
| z = [np.squeeze(y) for y in np.split(x, 3, axis=1)] |
| OpArgMngr.add_workload('histogramdd', x, (2, 3, 3), range=[[-1, 1], [0, 3], [0, 3]]) |
| OpArgMngr.add_workload('histogramdd', x, bins=ed, density=True) |
| OpArgMngr.add_workload('histogramdd', x, (2, 3, 4), range=[[-1, 1], [0, 3], [0, 4]], |
| density=True) |
| OpArgMngr.add_workload('histogramdd', z, bins=(4, 3, 2), |
| range=[[-2, 2], [0, 3], [0, 2]]) |
| |
| |
| def _add_workload_i0(): |
| a = 0 |
| b = np.array([2, 3, 4]) |
| # OpArgMngr.add_workload('i0', a) |
| OpArgMngr.add_workload('i0', b) |
| |
| |
| def _add_workload_in1d(): |
| test = np.array([0, 1, 2, 5, 0]) |
| states = [0, 2] |
| OpArgMngr.add_workload('in1d', test, states) |
| OpArgMngr.add_workload('in1d', test, states, invert=True) |
| |
| |
| def _add_workload_interp(): |
| x = np.linspace(0, 1, 5) |
| y = np.linspace(0, 1, 5) |
| x0 = np.linspace(0, 1, 50) |
| x1 = 0 |
| x2 = .3 |
| x3 = _np.float32(.3) |
| OpArgMngr.add_workload('interp', x0, x, y) |
| OpArgMngr.add_workload('interp', x1, x, y) |
| OpArgMngr.add_workload('interp', x2, x, y) |
| OpArgMngr.add_workload('interp', x3, x, y) |
| x = np.array([1, 2, 2.5, 3, 4]) |
| xp = np.array([1, 2, 3, 4]) |
| fp = np.array([1, 2, _np.inf, 4]) |
| OpArgMngr.add_workload('interp', x, xp, fp) |
| |
| |
| def _add_workload_intersect1d(): |
| a = np.array([5, 7, 1, 2]) |
| b = np.array([2, 4, 3, 1, 5]) |
| c = np.array([[2, 4, 5, 6, 6], [4, 7, 8, 7, 2]]) |
| d = np.array([[3, 2, 7, 7], [10, 12, 8, 7]]) |
| OpArgMngr.add_workload('intersect1d', a, b, assume_unique=True) |
| OpArgMngr.add_workload('intersect1d', a, b) |
| OpArgMngr.add_workload('intersect1d', a, b, assume_unique=True, |
| return_indices=True) |
| OpArgMngr.add_workload('intersect1d', c, d) |
| |
| |
| def _add_workload_isclose(): |
| a = np.array([1e10,1e-7]) |
| b = np.array([1.00001e10,1e-8]) |
| c = np.array([1.0, _np.nan]) |
| d = np.array([0.0, 0.0]) |
| e = np.array([1e-100, 1e-7]) |
| OpArgMngr.add_workload('isclose', a, b) |
| OpArgMngr.add_workload('isclose', c, c) |
| OpArgMngr.add_workload('isclose', c, c, equal_nan=True) |
| OpArgMngr.add_workload('isclose', d, e, atol=0.0) |
| |
| |
| def _add_workload_isin(): |
| element = 2*np.arange(4).reshape((2, 2)) |
| test_elements = [1, 2, 4, 8] |
| test_set = {1, 2, 4, 8} |
| OpArgMngr.add_workload('isin', element, test_elements) |
| OpArgMngr.add_workload('isin', element, test_elements, invert=True) |
| OpArgMngr.add_workload('isin', element, list(test_set)) |
| |
| |
| def _add_workload_ix_(): |
| a = np.array([0, 1]) |
| b = np.array([True, True]) |
| c = np.array([2, 4]) |
| d = np.array([False, False, True, False, True]) |
| OpArgMngr.add_workload('ix_', a, c) |
| OpArgMngr.add_workload('ix_', b, c) |
| OpArgMngr.add_workload('ix_', b, d) |
| |
| |
| def _add_workload_lexsort(): |
| a = np.array([1,5,1,4,3,4,4]) |
| b = np.array([9,4,0,4,0,2,1]) |
| OpArgMngr.add_workload('lexsort', (a, b)) |
| |
| |
| def _add_workload_min_scalar_type(): |
| a = 10 |
| OpArgMngr.add_workload('min_scalar_type', a) |
| |
| |
| def _add_workload_mirr(): |
| val = np.array([-4500, -800, 800, 800, 600, 600, 800, 800, 700, 3000]) |
| OpArgMngr.add_workload('mirr', val, 0.08, 0.055) |
| |
| |
| def _add_workload_modf(): |
| a = np.array([0, 3.5]) |
| b = -0.5 |
| OpArgMngr.add_workload('modf', a) |
| OpArgMngr.add_workload('modf', b) |
| |
| |
| def _add_workload_msort(): |
| A = np.array([[0.44567325, 0.79115165, 0.54900530], |
| [0.36844147, 0.37325583, 0.96098397], |
| [0.64864341, 0.52929049, 0.39172155]]) |
| OpArgMngr.add_workload('msort', A) |
| |
| |
| def _add_workload_nanargmax(): |
| a = np.array([[_np.nan, 4], [2, 3]]) |
| OpArgMngr.add_workload('nanargmax', a) |
| OpArgMngr.add_workload('nanargmax', a, axis=0) |
| OpArgMngr.add_workload('nanargmax', a, axis=1) |
| |
| |
| def _add_workload_nanargmin(): |
| a = np.array([[_np.nan, 4], [2, 3]]) |
| OpArgMngr.add_workload('nanargmin', a) |
| OpArgMngr.add_workload('nanargmin', a, axis=0) |
| OpArgMngr.add_workload('nanargmin', a, axis=1) |
| |
| |
| def _add_workload_nancumprod(): |
| a = np.array([[1, 2], [3, _np.nan]]) |
| OpArgMngr.add_workload('nancumprod', a) |
| OpArgMngr.add_workload('nancumprod', a, axis=0) |
| OpArgMngr.add_workload('nancumprod', a, axis=1) |
| |
| |
| def _add_workload_nancumsum(): |
| a = np.array([[1, 2], [3, _np.nan]]) |
| OpArgMngr.add_workload('nancumsum', a) |
| OpArgMngr.add_workload('nancumsum', a, axis=0) |
| OpArgMngr.add_workload('nancumsum', a, axis=1) |
| |
| |
| def _add_workload_nanmax(): |
| a = np.array([[1, 2], [3, _np.nan]]) |
| OpArgMngr.add_workload('nanmax', a) |
| OpArgMngr.add_workload('nanmax', a, axis=0) |
| OpArgMngr.add_workload('nanmax', a, axis=1) |
| |
| |
| def _add_workload_nanmedian(): |
| a = np.array([[10.0, _np.nan, 4], [3, 2, 1]]) |
| OpArgMngr.add_workload('nanmedian', a) |
| OpArgMngr.add_workload('nanmedian', a, axis=0) |
| OpArgMngr.add_workload('nanmedian', a, axis=1) |
| |
| |
| def _add_workload_nanmin(): |
| a = np.array([[1, 2], [3, _np.nan]]) |
| OpArgMngr.add_workload('nanmin', a) |
| OpArgMngr.add_workload('nanmin', a, axis=0) |
| OpArgMngr.add_workload('nanmin', a, axis=1) |
| |
| |
| def _add_workload_nanpercentile(): |
| a = np.array([[10.0, _np.nan, 4], [3, 2, 1]]) |
| OpArgMngr.add_workload('nanpercentile', a, 50) |
| OpArgMngr.add_workload('nanpercentile', a, 50, axis=0) |
| OpArgMngr.add_workload('nanpercentile', a, 50, axis=1) |
| OpArgMngr.add_workload('nanpercentile', a, 50, axis=1, keepdims=True) |
| OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='lower') |
| OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='higher') |
| OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='midpoint') |
| OpArgMngr.add_workload('nanpercentile', a, 50, interpolation='nearest') |
| |
| |
| def _add_workload_nanprod(): |
| a = 1 |
| b = np.array([1, _np.nan]) |
| c = np.array([[1, 2], [3, _np.nan]]) |
| OpArgMngr.add_workload('nanprod', a) |
| OpArgMngr.add_workload('nanprod', b) |
| OpArgMngr.add_workload('nanprod', c) |
| OpArgMngr.add_workload('nanprod', c, axis=0) |
| |
| |
| def _add_workload_nanquantile(): |
| a = np.array([[10.0, _np.nan, 4], [3, 2, 1]]) |
| OpArgMngr.add_workload('nanquantile', a, 0.4) |
| OpArgMngr.add_workload('nanquantile', a, 0.4, axis=0) |
| OpArgMngr.add_workload('nanquantile', a, 0.4, axis=1) |
| OpArgMngr.add_workload('nanquantile', a, 0.4, axis=1, keepdims=True) |
| OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='lower') |
| OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='higher') |
| OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='midpoint') |
| OpArgMngr.add_workload('nanquantile', a, 0.4, interpolation='nearest') |
| |
| |
| def _add_workload_nanstd(): |
| OpArgMngr.add_workload('nanstd', np.random.uniform(size=(4, 1))) |
| A = np.array([[1, 2, 3], [4, _np.nan, 6]]) |
| OpArgMngr.add_workload('nanstd', A) |
| OpArgMngr.add_workload('nanstd', A, 0) |
| OpArgMngr.add_workload('nanstd', A, 1) |
| OpArgMngr.add_workload('nanstd', np.array([1, -1, 1, -1])) |
| OpArgMngr.add_workload('nanstd', np.array([1, -1, 1, -1]), ddof=1) |
| OpArgMngr.add_workload('nanstd', np.array([1, -1, 1, -1]), ddof=2) |
| OpArgMngr.add_workload('nanstd', np.arange(10), out=np.array(0.)) |
| |
| |
| def _add_workload_nansum(): |
| a = 1 |
| b = np.array([1, _np.nan]) |
| c = np.array([[1, 2], [3, _np.nan]]) |
| OpArgMngr.add_workload('nansum', a) |
| OpArgMngr.add_workload('nansum', b) |
| OpArgMngr.add_workload('nansum', c) |
| OpArgMngr.add_workload('nansum', c, axis=0) |
| |
| |
| def _add_workload_nanvar(): |
| OpArgMngr.add_workload('nanvar', np.random.uniform(size=(4, 1))) |
| A = np.array([[1, 2, 3], [4, _np.nan, 6]]) |
| OpArgMngr.add_workload('nanvar', A) |
| OpArgMngr.add_workload('nanvar', A, 0) |
| OpArgMngr.add_workload('nanvar', A, 1) |
| OpArgMngr.add_workload('nanvar', np.array([1, -1, 1, -1])) |
| OpArgMngr.add_workload('nanvar', np.array([1, -1, 1, -1]), ddof=1) |
| OpArgMngr.add_workload('nanvar', np.array([1, -1, 1, -1]), ddof=2) |
| OpArgMngr.add_workload('nanvar', np.arange(10), out=np.array(0.)) |
| |
| |
| def _add_workload_ndim(): |
| a = 1 |
| b = np.array([[1,2,3],[4,5,6]]) |
| OpArgMngr.add_workload('ndim', a) |
| OpArgMngr.add_workload('ndim', b) |
| |
| |
| def _add_workload_npv(): |
| rate, cashflows = 0.281, np.array([-100, 39, 59, 55, 20]) |
| OpArgMngr.add_workload('npv', rate, cashflows) |
| |
| |
| def _add_workload_partition(): |
| a = np.array([3, 4, 2, 1]) |
| OpArgMngr.add_workload('partition', a, 3) |
| OpArgMngr.add_workload('partition', a, (2,3)) # |
| |
| |
| def _add_workload_piecewise(): |
| a = np.array([0, 0]) |
| b = np.array([1, 0]) |
| c = np.array([1]) |
| x = np.linspace(-2.5, 2.5, 6) |
| y = np.array([[ True, True, True, False, False, False], |
| [False, False, False, True, True, True]]) |
| z = np.array([-1, 1]) |
| OpArgMngr.add_workload('piecewise', a, b, c) |
| OpArgMngr.add_workload('piecewise', x, y, z) |
| |
| |
| def _add_workload_packbits(): |
| a = np.array([[[1, 0, 1], [0, 1, 0]], |
| [[1, 1, 0], [0, 0, 1]]], dtype = np.int64) |
| OpArgMngr.add_workload('packbits', a) |
| OpArgMngr.add_workload('packbits', a, axis=-1) |
| OpArgMngr.add_workload('packbits', a, bitorder='little') |
| |
| |
| def _add_workload_pmt(): |
| OpArgMngr.add_workload('pmt', 0.1 / 12, 1, 60, 55000) |
| |
| |
| def _add_workload_poly(): |
| a = np.array([3, -np.sqrt(2), np.sqrt(2)]) |
| b = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 0]]) |
| OpArgMngr.add_workload('poly', a) |
| OpArgMngr.add_workload('poly', b) |
| |
| |
| def _add_workload_polyadd(): |
| a = np.array([1, 2]) |
| b = np.array([9, 5, 4]) |
| OpArgMngr.add_workload('polyadd', a, b) |
| |
| |
| def _add_workload_polydiv(): |
| x = np.array([3.0, 5.0, 2.0]) |
| y = np.array([2.0, 1.0]) |
| OpArgMngr.add_workload('polydiv', x, y) |
| |
| |
| def _add_workload_polyfit(): |
| x = np.array([0.0, 1.0, 2.0, 3.0, 4.0, 5.0]) |
| y = np.array([0.0, 0.8, 0.9, 0.1, -0.8, -1.0]) |
| OpArgMngr.add_workload('polyfit', x, y, 3) |
| |
| |
| def _add_workload_polyint(): |
| a = np.array([1,2,3]) |
| OpArgMngr.add_workload('polyint', a) |
| OpArgMngr.add_workload('polyint', a, m=2) |
| |
| |
| def _add_workload_polymul(): |
| a = np.array([1, 2, 3]) |
| b = np.array([9, 5, 4]) |
| OpArgMngr.add_workload('polymul', a, b) |
| |
| |
| def _add_workload_polysub(): |
| a = np.array([1, 2, 3]) |
| b = np.array([9, 5, 4]) |
| OpArgMngr.add_workload('polysub', a, b) |
| |
| |
| def _add_workload_positive(array_pool): |
| OpArgMngr.add_workload('positive', array_pool['4x1']) |
| |
| |
| def _add_workload_ppmt(): |
| OpArgMngr.add_workload('ppmt', 0.1 / 12, 1, 60, 55000) |
| |
| |
| def _add_workload_promote_types(): |
| OpArgMngr.add_workload('promote_types', np.float16, np.float64) |
| |
| |
| def _add_workload_ptp(): |
| x = np.arange(4).reshape((2,2)) |
| OpArgMngr.add_workload('ptp', x) |
| OpArgMngr.add_workload('ptp', x, axis=0) |
| OpArgMngr.add_workload('ptp', x, axis=1) |
| OpArgMngr.add_workload('ptp', x, keepdims=True) |
| |
| |
| def _add_workload_pv(): |
| a = np.array((0.05, 0.04, 0.03))/12 |
| OpArgMngr.add_workload('pv', 0.05/12, 10*12, -100, 15692.93) |
| OpArgMngr.add_workload('pv', a, 10*12, -100, 15692.93) |
| |
| |
| def _add_workload_rate(): |
| OpArgMngr.add_workload('rate', 10, 0, -3500, 10000) |
| |
| |
| def _add_workload_real(): |
| a = np.array([1, 3, 5]) |
| b = 2 |
| OpArgMngr.add_workload('real', a) |
| OpArgMngr.add_workload('real', b) |
| |
| |
| def _add_workload_real_if_close(): |
| a = np.array([1, 3, 5]) |
| b = 2 |
| OpArgMngr.add_workload('real_if_close', a) |
| OpArgMngr.add_workload('real_if_close', b) |
| # OpArgMngr.add_workload('real_if_close', b, tol=1000) |
| |
| |
| def _add_workload_result_type(): |
| OpArgMngr.add_workload('result_type', 3.0, 2) |
| |
| |
| def _add_workload_rollaxis(): |
| a = np.ones((3,4,5,6)) |
| OpArgMngr.add_workload('rollaxis', a, 3, 1) |
| OpArgMngr.add_workload('rollaxis', a, 2) |
| OpArgMngr.add_workload('rollaxis', a, 1, 4) |
| |
| |
| def _add_workload_roots(): |
| a = np.array([1,2,1]) |
| OpArgMngr.add_workload('roots', a) |
| |
| |
| def _add_workload_searchsorted(): |
| a = np.array([1,2,3,4,5]) |
| b = np.array([-10, 10, 2, 3]) |
| OpArgMngr.add_workload('searchsorted', a, 3) |
| OpArgMngr.add_workload('searchsorted', a, 3, side='right') |
| OpArgMngr.add_workload('searchsorted', a, b) |
| |
| |
| def _add_workload_select(): |
| x = np.arange(10) |
| condlist = np.array([[ True, True, True, False, False, |
| False, False, False, False, False], |
| [ False, False, False, False, False, |
| False, True, True, True, True]], dtype=np.bool) |
| choicelist = np.array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], |
| [ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81]]) |
| OpArgMngr.add_workload('select', condlist, choicelist) |
| |
| |
| def _add_workload_setdiff1d(): |
| a = np.array([1, 2, 3, 2, 4, 1]) |
| b = np.array([3, 4, 5, 6]) |
| OpArgMngr.add_workload('setdiff1d', a, b) |
| |
| |
| def _add_workload_setxor1d(): |
| a = np.array([1, 2, 3, 2, 4]) |
| b = np.array([2, 3, 5, 7, 5]) |
| OpArgMngr.add_workload('setxor1d', a, b) |
| |
| |
| def _add_workload_signbit(): |
| a = -1.2 |
| b = np.array([1, -2.3, 2.1]) |
| OpArgMngr.add_workload('signbit', a) |
| OpArgMngr.add_workload('signbit', b) |
| |
| |
| def _add_workload_size(): |
| a = np.array([[1,2,3],[4,5,6]]) |
| OpArgMngr.add_workload('size', a) |
| OpArgMngr.add_workload('size', a, 1) |
| OpArgMngr.add_workload('size', a, 0) |
| |
| |
| def _add_workload_take_along_axis(): |
| a = np.array([[10, 30, 20], [60, 40, 50]]) |
| ai = np.argsort(a, axis=1) |
| OpArgMngr.add_workload('take_along_axis', a, ai, axis=1) |
| |
| |
| def _add_workload_trapz(): |
| a = np.array([1,2,3]) |
| b = np.arange(6).reshape(2, 3) |
| x = np.array([4,6,8]) |
| OpArgMngr.add_workload('trapz', a) |
| OpArgMngr.add_workload('trapz', a, x=x) |
| OpArgMngr.add_workload('trapz', a, dx=2) |
| OpArgMngr.add_workload('trapz', b, axis=1) |
| OpArgMngr.add_workload('trapz', b, axis=0) |
| |
| |
| def _add_workload_tril_indices_from(): |
| for dt in ['float16', 'float32', 'float64', 'int32', 'int64', 'int8', 'uint8']: |
| OpArgMngr.add_workload('tril_indices_from', np.ones((2, 2), dtype=dt)) |
| arr = np.array([[1, 1, _np.inf], |
| [1, 1, 1], |
| [_np.inf, 1, 1]]) |
| OpArgMngr.add_workload('tril_indices_from', arr) |
| OpArgMngr.add_workload('tril_indices_from', np.zeros((3, 3), dtype=dt)) |
| |
| |
| def _add_workload_trim_zeros(): |
| a = np.array((0, 0, 0, 1, 2, 3, 0, 2, 1, 0)) |
| OpArgMngr.add_workload('trim_zeros', a) |
| OpArgMngr.add_workload('trim_zeros', a, 'b') |
| |
| |
| def _add_workload_triu_indices_from(): |
| a =np.array([[1,2,3],[4,5,6],[7,8,9],[10,11,12]]) |
| OpArgMngr.add_workload('triu_indices_from', a, -1) |
| |
| |
| def _add_workload_union1d(): |
| a = np.array([5, 4, 7, 1, 2]) |
| b = np.array([2, 4, 3, 3, 2, 1, 5]) |
| x = np.array([[0, 1, 2], [3, 4, 5]]) |
| y = np.array([0, 1, 2, 3, 4]) |
| OpArgMngr.add_workload('union1d', a, b) |
| OpArgMngr.add_workload('union1d', x, y) |
| |
| |
| def _add_workload_unpackbits(): |
| a = np.array([[2], [7], [23]], dtype=np.uint8) |
| OpArgMngr.add_workload('unpackbits', a) |
| OpArgMngr.add_workload('unpackbits', a, axis=1) |
| |
| |
| def _add_workload_unwrap(): |
| phase = np.linspace(0, np.pi, num=5) |
| phase[3:] += np.pi |
| phase_s = np.vstack((phase,phase)) |
| OpArgMngr.add_workload('unwrap', phase) |
| OpArgMngr.add_workload('unwrap', phase_s, axis=1) |
| |
| |
| def _add_workload_vander(): |
| x = np.array([1, 2, 3, 5]) |
| OpArgMngr.add_workload('vander', x, 3) |
| OpArgMngr.add_workload('vander', x, 3, increasing=True) |
| |
| |
| @use_np |
| def _prepare_workloads(): |
| array_pool = { |
| '4x1': np.random.uniform(size=(4, 1)) + 2, |
| '2x4': np.array([[ -433, float('inf'), 456, _np.inf, _np.nan], |
| [-_np.inf, float("nan"), -1, 0, _np.inf]]), |
| '1x2': np.random.uniform(size=(1, 2)) + 2, |
| '1x1x0': np.array([[[]]]) |
| } |
| |
| _add_workload_all() |
| _add_workload_any() |
| _add_workload_sometrue() |
| _add_workload_argmin() |
| _add_workload_argmax() |
| _add_workload_around() |
| _add_workload_round() |
| _add_workload_round_() |
| _add_workload_argsort() |
| _add_workload_sort() |
| _add_workload_append() |
| _add_workload_bincount() |
| _add_workload_broadcast_arrays(array_pool) |
| _add_workload_broadcast_to() |
| _add_workload_clip() |
| _add_workload_concatenate(array_pool) |
| _add_workload_copy() |
| _add_workload_cross() |
| _add_workload_cumsum() |
| _add_workload_ravel() |
| _add_workload_unravel_index() |
| _add_workload_diag_indices_from() |
| _add_workload_diag() |
| _add_workload_diagonal() |
| _add_workload_diagflat() |
| _add_workload_dot() |
| _add_workload_matmul() |
| _add_workload_expand_dims() |
| _add_workload_fix() |
| _add_workload_flip() |
| _add_workload_flipud() |
| _add_workload_fliplr() |
| _add_workload_max(array_pool) |
| _add_workload_amax(array_pool) |
| _add_workload_min(array_pool) |
| _add_workload_amin(array_pool) |
| _add_workload_mean(array_pool) |
| _add_workload_nonzero() |
| _add_workload_ones_like(array_pool) |
| _add_workload_atleast_nd() |
| _add_workload_prod(array_pool) |
| _add_workload_product(array_pool) |
| _add_workload_repeat(array_pool) |
| _add_workload_reshape() |
| _add_workload_rint(array_pool) |
| _add_workload_roll() |
| _add_workload_split() |
| _add_workload_array_split() |
| _add_workload_hsplit() |
| _add_workload_vsplit() |
| _add_workload_dsplit() |
| _add_workload_squeeze() |
| _add_workload_stack(array_pool) |
| _add_workload_std() |
| _add_workload_sum() |
| _add_workload_swapaxes() |
| _add_workload_take() |
| _add_workload_tensordot() |
| _add_workload_tile() |
| _add_workload_transpose() |
| _add_workload_unique() |
| _add_workload_delete() |
| _add_workload_var(array_pool) |
| _add_workload_zeros_like(array_pool) |
| _add_workload_linalg_norm() |
| _add_workload_linalg_cholesky() |
| _add_workload_linalg_qr() |
| _add_workload_linalg_inv() |
| _add_workload_linalg_solve() |
| _add_workload_linalg_det() |
| _add_workload_linalg_tensorinv() |
| _add_workload_linalg_tensorsolve() |
| _add_workload_linalg_lstsq() |
| _add_workload_linalg_pinv() |
| _add_workload_linalg_eigvals() |
| _add_workload_linalg_eig() |
| _add_workload_linalg_eigvalsh() |
| _add_workload_linalg_eigh() |
| _add_workload_linalg_slogdet() |
| _add_workload_linalg_cond() |
| _add_workload_linalg_matrix_power() |
| _add_workload_linalg_matrix_rank() |
| _add_workload_linalg_multi_dot() |
| _add_workload_trace() |
| _add_workload_tril() |
| _add_workload_triu() |
| _add_workload_outer() |
| _add_workload_kron() |
| _add_workload_meshgrid() |
| _add_workload_einsum() |
| _add_workload_abs() |
| _add_workload_fabs() |
| _add_workload_add(array_pool) |
| _add_workload_arctan2() |
| _add_workload_copysign() |
| _add_workload_degrees() |
| _add_workload_true_divide() |
| _add_workload_inner() |
| _add_workload_insert() |
| _add_workload_interp() |
| _add_workload_hypot() |
| _add_workload_lcm() |
| _add_workload_gcd() |
| _add_workload_bitwise_and() |
| _add_workload_bitwise_xor() |
| _add_workload_bitwise_or() |
| _add_workload_bitwise_left_shift() |
| _add_workload_bitwise_right_shift() |
| _add_workload_ldexp() |
| _add_workload_logaddexp(array_pool) |
| _add_workload_subtract(array_pool) |
| _add_workload_multiply(array_pool) |
| _add_workload_power(array_pool) |
| _add_workload_mod(array_pool) |
| _add_workload_fmod(array_pool) |
| _add_workload_floor_divide(array_pool) |
| _add_workload_remainder() |
| _add_workload_maximum(array_pool) |
| _add_workload_fmax(array_pool) |
| _add_workload_minimum(array_pool) |
| _add_workload_fmin(array_pool) |
| _add_workload_negative(array_pool) |
| _add_workload_absolute(array_pool) |
| _add_workload_sign(array_pool) |
| _add_workload_exp(array_pool) |
| _add_workload_log(array_pool) |
| _add_workload_log2(array_pool) |
| _add_workload_log1p() |
| _add_workload_log10(array_pool) |
| _add_workload_expm1() |
| _add_workload_sqrt() |
| _add_workload_square() |
| _add_workload_cbrt() |
| _add_workload_reciprocal() |
| _add_workload_sin(array_pool) |
| _add_workload_cos(array_pool) |
| _add_workload_tan(array_pool) |
| _add_workload_sinh(array_pool) |
| _add_workload_cosh(array_pool) |
| _add_workload_tanh(array_pool) |
| _add_workload_arcsin(array_pool) |
| _add_workload_arccos(array_pool) |
| _add_workload_arctan(array_pool) |
| _add_workload_arcsinh(array_pool) |
| _add_workload_arccosh(array_pool) |
| _add_workload_arctanh(array_pool) |
| _add_workload_ceil(array_pool) |
| _add_workload_turnc(array_pool) |
| _add_workload_floor(array_pool) |
| _add_workload_logical_not(array_pool) |
| _add_workload_bitwise_not() |
| _add_workload_invert() |
| _add_workload_vdot() |
| _add_workload_vstack(array_pool) |
| _add_workload_column_stack() |
| _add_workload_hstack(array_pool) |
| _add_workload_dstack(array_pool) |
| _add_workload_equal(array_pool) |
| _add_workload_not_equal(array_pool) |
| _add_workload_greater(array_pool) |
| _add_workload_greater_equal(array_pool) |
| _add_workload_less(array_pool) |
| _add_workload_less_equal(array_pool) |
| _add_workload_logical_and(array_pool) |
| _add_workload_logical_or(array_pool) |
| _add_workload_logical_xor(array_pool) |
| _add_workload_where() |
| _add_workload_shape() |
| _add_workload_diff() |
| _add_workload_ediff1d() |
| _add_workload_quantile() |
| _add_workload_median(array_pool) |
| _add_workload_percentile() |
| _add_workload_resize() |
| _add_workload_full_like(array_pool) |
| _add_workload_empty_like() |
| _add_workload_nan_to_num() |
| _add_workload_polyval() |
| _add_workload_isnan(array_pool) |
| _add_workload_isinf(array_pool) |
| _add_workload_isposinf(array_pool) |
| _add_workload_isneginf(array_pool) |
| _add_workload_isfinite(array_pool) |
| _add_workload_heaviside() |
| _add_workload_spacing() |
| _add_workload_allclose() |
| _add_workload_alltrue() |
| _add_workload_apply_along_axis() |
| _add_workload_apply_over_axes() |
| _add_workload_argpartition() |
| _add_workload_argwhere() |
| _add_workload_array_equal() |
| _add_workload_array_equiv() |
| _add_workload_choose() |
| _add_workload_compress() |
| _add_workload_corrcoef() |
| _add_workload_correlate() |
| _add_workload_count_nonzero() |
| _add_workload_cov() |
| _add_workload_cumprod() |
| _add_workload_digitize() |
| _add_workload_divmod() |
| _add_workload_extract() |
| _add_workload_flatnonzero(array_pool) |
| _add_workload_float_power() |
| _add_workload_frexp() |
| _add_workload_histogram2d() |
| _add_workload_histogram_bin_edges() |
| _add_workload_histogramdd() |
| _add_workload_i0() |
| _add_workload_in1d() |
| _add_workload_interp() |
| _add_workload_intersect1d() |
| _add_workload_isclose() |
| _add_workload_isin() |
| _add_workload_ix_() |
| _add_workload_lexsort() |
| _add_workload_min_scalar_type() |
| _add_workload_mirr() |
| _add_workload_modf() |
| _add_workload_msort() |
| _add_workload_nanargmax() |
| _add_workload_nanargmin() |
| _add_workload_nancumprod() |
| _add_workload_nancumsum() |
| _add_workload_nanmax() |
| _add_workload_nanmedian() |
| _add_workload_nanmin() |
| _add_workload_nanpercentile() |
| _add_workload_nanprod() |
| _add_workload_nanquantile() |
| _add_workload_nanstd() |
| _add_workload_nansum() |
| _add_workload_nanvar() |
| _add_workload_ndim() |
| _add_workload_npv() |
| _add_workload_packbits() |
| _add_workload_pad() |
| _add_workload_partition() |
| _add_workload_piecewise() |
| _add_workload_pmt() |
| _add_workload_poly() |
| _add_workload_polyadd() |
| _add_workload_polydiv() |
| _add_workload_polyfit() |
| _add_workload_polyint() |
| _add_workload_polymul() |
| _add_workload_polysub() |
| _add_workload_positive(array_pool) |
| _add_workload_ppmt() |
| _add_workload_promote_types() |
| _add_workload_ptp() |
| _add_workload_pv() |
| _add_workload_rate() |
| _add_workload_real() |
| _add_workload_real_if_close() |
| _add_workload_result_type() |
| _add_workload_rollaxis() |
| _add_workload_roots() |
| _add_workload_searchsorted() |
| _add_workload_select() |
| _add_workload_setdiff1d() |
| _add_workload_setxor1d() |
| _add_workload_signbit() |
| _add_workload_size() |
| _add_workload_take_along_axis() |
| _add_workload_trapz() |
| _add_workload_tril_indices_from() |
| _add_workload_trim_zeros() |
| _add_workload_triu_indices_from() |
| _add_workload_union1d() |
| _add_workload_unpackbits() |
| _add_workload_unwrap() |
| _add_workload_vander() |
| |
| |
| def _get_numpy_op_output(onp_op, *args, **kwargs): |
| onp_args = [arg.asnumpy() if isinstance(arg, np.ndarray) else arg for arg in args] |
| onp_kwargs = {k: v.asnumpy() if isinstance(v, np.ndarray) else v for k, v in kwargs.items()} |
| for i, v in enumerate(onp_args): |
| if isinstance(v, (list, tuple)): |
| new_arrs = [a.asnumpy() if isinstance(a, np.ndarray) else a for a in v] |
| onp_args[i] = new_arrs |
| |
| return onp_op(*onp_args, **onp_kwargs) |
| |
| |
| def _check_interoperability_helper(op_name, rel_tol, abs_tol, *args, **kwargs): |
| strs = op_name.split('.') |
| if len(strs) == 1: |
| onp_op = getattr(_np, op_name) |
| mxnp_op = getattr(np, op_name) |
| elif len(strs) == 2: |
| onp_op = getattr(getattr(_np, strs[0]), strs[1]) |
| mxnp_op = getattr(getattr(np, strs[0]), strs[1]) |
| else: |
| assert False |
| if not is_op_runnable(): |
| return |
| out = mxnp_op(*args, **kwargs) |
| expected_out = _get_numpy_op_output(onp_op, *args, **kwargs) |
| if isinstance(out, (tuple, list)): |
| assert type(out) == type(expected_out) |
| for arr, expected_arr in zip(out, expected_out): |
| if isinstance(arr, np.ndarray): |
| assert_almost_equal(arr.asnumpy(), expected_arr, rtol=rel_tol, atol=abs_tol, use_broadcast=False, equal_nan=True) |
| else: |
| _np.testing.assert_equal(arr, expected_arr) |
| elif isinstance(out, np.ndarray): |
| assert_almost_equal(out.asnumpy(), expected_out, rtol=rel_tol, atol=abs_tol, use_broadcast=False, equal_nan=True) |
| elif isinstance(out, _np.dtype): |
| _np.testing.assert_equal(out, expected_out) |
| else: |
| assert _np.isscalar(out), "{} is not a scalar type".format(str(type(out))) |
| if isinstance(out, _np.float): |
| _np.testing.assert_almost_equal(out, expected_out) |
| else: |
| _np.testing.assert_equal(out, expected_out) |
| |
| |
| def check_interoperability(op_list): |
| OpArgMngr.randomize_workloads() |
| for name in op_list: |
| if name in _TVM_OPS and not is_op_runnable(): |
| continue |
| if name in ['shares_memory', 'may_share_memory', 'empty_like', |
| '__version__', 'dtype', '_NoValue']: # skip list |
| continue |
| if name in ['full_like', 'zeros_like', 'ones_like'] and \ |
| StrictVersion(platform.python_version()) < StrictVersion('3.0.0'): |
| continue |
| default_tols = (1e-3, 1e-4) |
| tols = {'linalg.tensorinv': (1e-2, 5e-3), |
| 'linalg.solve': (1e-3, 5e-2)} |
| (rel_tol, abs_tol) = tols.get(name, default_tols) |
| print('Dispatch test:', name) |
| workloads = OpArgMngr.get_workloads(name) |
| assert workloads is not None, 'Workloads for operator `{}` has not been ' \ |
| 'added for checking interoperability with ' \ |
| 'the official NumPy.'.format(name) |
| for workload in workloads: |
| _check_interoperability_helper(name, rel_tol, abs_tol, *workload['args'], **workload['kwargs']) |
| |
| |
| @use_np |
| @with_array_function_protocol |
| @pytest.mark.serial |
| def test_np_memory_array_function(): |
| ops = [_np.shares_memory, _np.may_share_memory] |
| for op in ops: |
| data_mx = np.zeros([13, 21, 23, 22], dtype=np.float32) |
| data_np = _np.zeros([13, 21, 23, 22], dtype=np.float32) |
| assert op(data_mx[0,:,:,:], data_mx[1,:,:,:]) == op(data_np[0,:,:,:], data_np[1,:,:,:]) |
| assert op(data_mx[0,0,0,2:5], data_mx[0,0,0,4:7]) == op(data_np[0,0,0,2:5], data_np[0,0,0,4:7]) |
| assert op(data_mx, np.ones((5, 0))) == op(data_np, _np.ones((5, 0))) |
| |
| |
| @use_np |
| @with_array_function_protocol |
| @pytest.mark.serial |
| def test_np_array_function_protocol(): |
| check_interoperability(_NUMPY_ARRAY_FUNCTION_LIST) |
| |
| |
| @use_np |
| @with_array_ufunc_protocol |
| @pytest.mark.serial |
| def test_np_array_ufunc_protocol(): |
| prev_state = util.set_flush_denorms(False) |
| try: |
| check_interoperability(_NUMPY_ARRAY_UFUNC_LIST) |
| finally: |
| util.set_flush_denorms(prev_state) |
| |
| |
| @use_np |
| @pytest.mark.serial |
| def test_np_fallback_ops(): |
| op_list = np.fallback.__all__ + ['linalg.{}'.format(op_name) for op_name in np.fallback_linalg.__all__] |
| check_interoperability(op_list) |