blob: 41cabeaa4527d0df08360bb33b2a6bc892984775 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import numpy as np
import mxnet as mx
import mxnet.ndarray.numpy._internal as _npi
from mxnet import gluon
from numpy.testing import assert_allclose, assert_array_equal
from mxnet.test_utils import *
from mxnet.base import _as_list
from mxnet.attribute import AttrScope
@mx.util.use_np
def test_dynamic_shape():
class _TestBlock(gluon.HybridBlock):
def __init__(self):
super(_TestBlock, self).__init__()
def forward(self, data, index):
return _npi.boolean_mask(data, index)
block = _TestBlock()
block.hybridize()
data = mx.np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.np.array([0, 1, 1])
data.attach_grad()
with mx.autograd.record():
result = block(data, index)
result.backward()
result_nd = np.array([[4, 5, 6], [7, 8, 9]])
data_grad_nd = np.array([[0., 0., 0.], [1., 1., 1.], [1., 1., 1.]])
assert_almost_equal(result.asnumpy(), result_nd)
assert_almost_equal(data.grad.asnumpy(), data_grad_nd)
@mx.util.use_np
def test_dynamic_shape_with_reshape():
# test dynamic shape op followed by reshape op
class _TestBlock(gluon.HybridBlock):
def __init__(self):
super(_TestBlock, self).__init__()
def forward(self, data, index):
return _npi.boolean_mask(data, index).reshape((-1, ))
block = _TestBlock()
block.hybridize()
data = mx.np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.np.array([0, 1, 1])
data.attach_grad()
with mx.autograd.record():
result = block(data, index)
result.backward()
result_nd = np.array([4, 5, 6, 7, 8, 9])
data_grad_nd = np.array([[0., 0., 0.], [1., 1., 1.], [1., 1., 1.]])
assert_almost_equal(result.asnumpy(), result_nd)
assert_almost_equal(data.grad.asnumpy(), data_grad_nd)
@mx.util.use_np
def test_dynamic_shape_multiple_hybridize():
# test multiple hybridize calls for the same block
class _TestBlock(gluon.HybridBlock):
def __init__(self):
super(_TestBlock, self).__init__()
def forward(self, data, index):
return mx.np.sum(_npi.boolean_mask(data, index)) - 5
block = _TestBlock()
data = mx.np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.np.array([0, 1, 0])
result_nd = np.array([10])
block.hybridize()
result = block(data, index)
assert_almost_equal(result.asnumpy(), result_nd)
block.hybridize(static_alloc=True)
result = block(data, index)
assert_almost_equal(result.asnumpy(), result_nd)
block.hybridize(static_alloc=True, static_shape=True)
result = block(data, index)
assert_almost_equal(result.asnumpy(), result_nd)
@mx.util.use_np
def test_dynamic_shape_switch_hybridize():
# test hybridize switch on and off for the same block
class _TestBlock(gluon.HybridBlock):
def __init__(self):
super(_TestBlock, self).__init__()
def forward(self, data, index):
return mx.np.sum(_npi.boolean_mask(data, index)) - 5
block = _TestBlock()
data = mx.np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.np.array([0, 1, 0])
result_nd = np.array([10])
block.hybridize()
result = block(data, index)
assert_almost_equal(result.asnumpy(), result_nd)
block.hybridize(active=False)
result = block(data, index)
assert_almost_equal(result.asnumpy(), result_nd)
block.hybridize(static_alloc=True, static_shape=True)
result = block(data, index)
assert_almost_equal(result.asnumpy(), result_nd)
@mx.util.use_np
def test_dynamic_shape_backward():
# test dynamic shape ops with backward prop
class _TestBlock(gluon.HybridBlock):
def __init__(self):
super(_TestBlock, self).__init__()
def forward(self, data, index):
return mx.np.sum(_npi.boolean_mask(data, index)) - 5
block = _TestBlock()
for static_alloc in [True, False]:
block.hybridize(static_alloc=static_alloc)
data = mx.np.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]])
index = mx.np.array([0, 1, 0])
data.attach_grad()
with mx.autograd.record():
result = block(data, index)
result.backward()
result_nd = np.array([10.])
data_grad_nd = np.array([[0., 0., 0.], [1., 1., 1.], [0., 0., 0.]])
assert_almost_equal(result.asnumpy(), result_nd)
assert_almost_equal(data.grad.asnumpy(), data_grad_nd)