blob: 82ea51706686da250c55af3dfe50e2f9df065bb8 [file] [log] [blame]
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import sys
import math
import numpy as np
import mxnet as mx
from mxnet.test_utils import rand_ndarray, assert_almost_equal, rand_coord_2d, create_vector
from mxnet.util import TemporaryDirectory
from mxnet import gluon, nd
from common import with_seed
import pytest
# dimension constants
LARGE_X = 4300000000
MEDIUM_X = 1000000000
@pytest.mark.timeout(0)
def test_nn():
def check_dense():
data = mx.nd.ones(shape=LARGE_X)
linear = gluon.nn.Dense(2)
linear.initialize()
res = linear(data)
assert res.shape == (LARGE_X, 2)
def check_sign():
a = mx.nd.random.normal(-1, 1, shape=LARGE_X)
mx_res = mx.nd.sign(a)
assert_almost_equal(mx_res[-1].asnumpy(), np.sign(a[-1].asnumpy()))
# TODO: correctness of layernorm
# numpy implementation for large vector is flaky
def check_layer_norm():
axis = 0
eps = 1E-5
in_shape = LARGE_X
data = nd.random.normal(0, 1, in_shape)
gamma = nd.random.normal(0, 1, in_shape)
beta = nd.random.normal(0, 1, in_shape)
mx_out = nd.LayerNorm(data, gamma, beta, axis, eps)
assert mx_out.shape == (in_shape,)
# TODO: correctness of batchnorm
# in future, we could test if mean, var of output
# matches target output's mean, var
def check_batchnorm():
shape = LARGE_X
axis = 0 # since vector
data = mx.nd.ones(shape=shape)
bn_gamma = mx.nd.random.uniform(shape=shape)
bn_beta = mx.nd.random.uniform(shape=shape)
bn_running_mean = mx.nd.zeros(shape)
bn_running_var = mx.nd.ones(shape)
output = mx.nd.BatchNorm(data, bn_gamma, bn_beta,
bn_running_mean, bn_running_var, axis=axis)
assert output.shape == (shape,)
def check_sequence_mask():
# Sequence Mask input [max_sequence_length, batch_size]
# test with input batch_size = 2
a = nd.arange(0, LARGE_X * 2).reshape(LARGE_X, 2)
# test as identity operator
b = nd.SequenceMask(a)
assert b[-1][0] == a[-1][0]
assert b.shape == a.shape
# test with default mask
b = nd.SequenceMask(a, sequence_length=nd.array([1, 1]),
use_sequence_length=True)
assert b[0][1] == a[0][1] # first sequence of each batch kept
assert b[-1][-1] != a[-1][-1] # rest sequences masked
assert b[-1][-1] == 0
# test with mask value
b = nd.SequenceMask(a, sequence_length=nd.array([1, 1]),
use_sequence_length=True, value=-1)
assert b[-1][-1] == -1
def check_sequence_reverse():
a = nd.arange(0, LARGE_X * 2).reshape(LARGE_X, 2)
# test as reverse operator
b = nd.SequenceReverse(a)
assert b[-1][0] == a[0][0]
assert b.shape == a.shape
# test with sequence length
b = nd.SequenceReverse(a, sequence_length=nd.array([2, 3]),
use_sequence_length=True)
assert b[1][0] == a[0][0] # check if reversed
assert b[-1][0] == a[-1][0] # check if intact
assert b.shape == a.shape
def check_sequence_last():
a = nd.arange(0, LARGE_X * 2).reshape(LARGE_X, 2)
# test if returns last sequence
b = nd.SequenceLast(a)
assert_almost_equal(b.asnumpy(), a[-1].asnumpy())
assert b.shape == (2,)
# test with sequence length
# parameter sequence_length - NDArray with shape (batch_size)
# (2,3) indicates 2nd sequence from batch 1 and 3rd sequence from batch 2
# need to mention dtype = int64 for sequence_length ndarray to support large indices
# else it defaults to float32 and errors
b = nd.SequenceLast(a, sequence_length=mx.nd.array([2, 3], dtype="int64"),
use_sequence_length=True)
# check if it takes 2nd sequence from the first batch
assert b[0] == a[1][0]
check_sequence_last()
check_dense()
check_sign()
check_layer_norm()
check_batchnorm()
check_sequence_mask()
check_sequence_reverse()
@pytest.mark.timeout(0)
def test_tensor():
def check_ndarray_zeros():
a = nd.zeros(shape=LARGE_X)
assert a[-1] == 0
assert a.shape == (LARGE_X,)
assert a.size == LARGE_X
def check_ndarray_ones():
a = nd.ones(shape=LARGE_X)
assert a[-1] == 1
assert nd.sum(a) == LARGE_X
def check_ndarray_empty():
a = nd.empty(LARGE_X)
assert a.shape == (LARGE_X,)
@with_seed()
def check_ndarray_random_uniform():
a = nd.random.uniform(shape=LARGE_X)
assert a[-1] != 0
@pytest.mark.skip(reason="Randint flaky, tracked at https://github.com/apache/mxnet/issues/16172")
@with_seed()
def check_ndarray_random_randint():
# check if randint can generate value greater than 2**32 (large)
low = 2**32
high = 2**34
a = nd.random.randint(low, high, dtype=np.int64, shape=LARGE_X).asnumpy()
assert a.shape == (LARGE_X,)
assert (a >= low).all() and (a < high).all()
@with_seed()
def check_ndarray_random_exponential():
a = nd.random.exponential(shape=LARGE_X)
assert a[-1] >= 0.
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_gamma():
a = nd.random.gamma(shape=LARGE_X)
assert a[-1] >= 0.
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_generalized_negative_binomial():
a = nd.random.generalized_negative_binomial(shape=LARGE_X)
assert a[-1] >= 0.
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_multinomial():
a = nd.random.multinomial(nd.random.uniform(shape=LARGE_X))
assert a[-1] >= 0.
assert a.shape[0] == 1
@with_seed()
def check_ndarray_random_negative_binomial():
a = nd.random.negative_binomial(shape=LARGE_X)
assert a[-1] >= 0.
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_normal():
a = nd.random.normal(shape=LARGE_X)
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_poisson():
a = nd.random.poisson(shape=LARGE_X)
assert a[-1] >= 0.
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_randn():
a = nd.random.randn(LARGE_X)
assert a.shape[0] == LARGE_X
@with_seed()
def check_ndarray_random_shuffle():
a = nd.ones(shape=LARGE_X)
a[-1] = 3
a = nd.random.shuffle(a)
unique_a = np.unique(a.asnumpy())
assert len(unique_a) == 2 # only 2 unique values
assert unique_a[0] == 1 # first unique value is 1
assert unique_a[1] == 3 # second unique value is 3
assert a.shape[0] == LARGE_X
def check_full():
a = nd.full(LARGE_X, 3)
assert a.shape[0] == LARGE_X
assert a[LARGE_X // 2] == 3
assert a[-1] == 3
def check_repeat():
x = create_vector(size=LARGE_X//2)
y = nd.repeat(x, repeats=2, axis = 0)
assert y.shape[0] == LARGE_X
assert y[1] == 0
assert y[LARGE_X-1] == LARGE_X//2-1
def check_clip():
a = create_vector(LARGE_X)
res = nd.clip(a, a_min=100, a_max=1000)
assert res[-1] == 1000
def check_slice():
a = nd.ones(LARGE_X)
res = nd.slice(a, begin=(LARGE_X - MEDIUM_X), end=LARGE_X)
assert res.shape[0] == MEDIUM_X
assert res[0] == 1
def check_slice_assign():
a = nd.ones(shape=LARGE_X)
a[LARGE_X-1:LARGE_X] = 1000
assert np.sum(a[-1].asnumpy() == 1000) == 1
def check_take():
a = nd.ones(shape=LARGE_X)
idx = nd.arange(LARGE_X - 1000, LARGE_X)
res = nd.take(a, idx)
assert np.sum(res.asnumpy() == 1) == res.shape[0]
def check_expand_dims():
a = nd.ones(shape=LARGE_X)
res = nd.expand_dims(a, axis=0)
assert res[0][0] == 1
assert res.shape == (1, a.shape[0])
def check_squeeze():
a = nd.ones(shape=LARGE_X)
data = nd.expand_dims(a, axis=0)
res = nd.squeeze(data)
assert a[0] == res[0]
assert res.shape == a.shape
def check_broadcast_div():
a = nd.ones(shape=LARGE_X)
b = nd.ones(shape=LARGE_X) * 2
res = a / b
assert np.sum(res.asnumpy() == 0.5) == a.shape[0]
def check_size():
b = create_vector(size=LARGE_X)
# explicit wait_to_read()
assert b[0] == 0
assert b.size == LARGE_X
def check_copy():
a = nd.ones(LARGE_X)
b = a.copy()
assert a[0] == b[0]
assert b.shape == a.shape
assert b.size == LARGE_X
def check_copy_to():
a = create_vector(size=LARGE_X)
# keeping dtype same as input uses parallel copy which is much faster
b = nd.zeros(LARGE_X, dtype=np.int64)
c = a.copyto(b)
assert c is b
assert b[-1] == LARGE_X-1
assert b[0] == 0
def check_zeros_like():
a = nd.ones(LARGE_X)
b = nd.zeros_like(a)
assert b[-1] == 0
assert b.shape == a.shape
def check_ones_like():
a = nd.zeros(LARGE_X)
b = nd.ones_like(a)
assert b[-1] == 1
assert b.shape == a.shape
def check_shape():
b = create_vector(size=LARGE_X)
# explicit wait_to_read()
assert b[0] == 0
assert b.shape[0] == LARGE_X
def check_concat():
a = nd.ones(LARGE_X)
b = nd.zeros(LARGE_X)
c = nd.concat(a, b, dim=0)
assert c[0] == 1
assert c[-1] == 0
assert c.shape[0] == (2 * LARGE_X)
def check_slice_like():
a = create_vector(size=LARGE_X)
b = nd.ones(LARGE_X//2)
c = nd.slice_like(a, b)
assert c.shape == b.shape
assert c[0] == 0
assert c[-1] == (LARGE_X // 2 - 1)
def check_slice_axis():
a = create_vector(size=LARGE_X)
med = LARGE_X // 2
c = nd.slice_axis(a, axis=0, begin=0, end=med)
assert c.shape[0] == a.shape[0] // 2
assert c[-1][0] == (med - 1)
def check_gather():
arr = mx.nd.ones(LARGE_X)
# Passing dtype=np.int64 since randomly generated indices are
# very large that exceeds int32 limits.
idx = mx.nd.random.randint(0, LARGE_X, 10, dtype=np.int64)
# Calls gather_nd internally
tmp = arr[idx]
assert np.sum(tmp.asnumpy() == 1) == 10
# Calls gather_nd internally
arr[idx] += 1
assert np.sum(arr[idx].asnumpy() == 2) == 10
def check_infer_shape():
data_1 = mx.symbol.Variable('data_1')
data_2 = mx.symbol.Variable('data_2')
add = data_1+data_2
# > add.infer_shape(data_1=(LARGE_X,), data_2=(LARGE_X,))
# OUTPUT - arg_shapes, out_shapes, aux_shapes
_, out_shapes, _ = add.infer_shape(data_1=(LARGE_X,), data_2=(LARGE_X,))
assert out_shapes == [(LARGE_X,)]
def check_astype():
x = create_vector(size=LARGE_X//4)
x = nd.tile(x, 4)
y = x.astype('int32')
assert y.dtype == np.int32
assert y[-1] == LARGE_X//4-1
def check_cast():
x = create_vector(size=LARGE_X//4)
x = nd.tile(x, 4)
y = nd.cast(x, np.int32)
assert y.dtype == np.int32
assert y[-1] == LARGE_X//4-1
def check_load_save():
x = create_vector(size=LARGE_X)
with TemporaryDirectory() as tmp:
tmpfile = os.path.join(tmp, 'large_vector')
nd.save(tmpfile, [x])
y = nd.load(tmpfile)
y = y[0]
assert x[0] == y[0]
assert x[-1] == y[-1]
def check_binary_broadcast():
def check_correctness(mxnet_op, numpy_op, atol=1e-3):
a = mx.nd.ones(LARGE_X).as_np_ndarray()
b = 2*mx.nd.ones(LARGE_X).as_np_ndarray()
res = mxnet_op(a, b)
np_res = numpy_op(1, 2)
assert np.abs(res[-1] - np_res) < atol
check_correctness(mx.np.arctan2, np.arctan2)
check_correctness(mx.np.hypot, np.hypot)
check_ndarray_zeros()
check_ndarray_ones()
check_ndarray_empty()
check_ndarray_random_uniform()
check_ndarray_random_randint()
check_ndarray_random_exponential()
check_ndarray_random_gamma()
check_ndarray_random_generalized_negative_binomial()
check_ndarray_random_multinomial()
check_ndarray_random_negative_binomial()
check_ndarray_random_normal()
check_ndarray_random_poisson()
check_ndarray_random_randn()
check_ndarray_random_shuffle()
check_full()
check_repeat()
check_clip()
check_slice()
check_slice_assign()
check_take()
check_expand_dims()
check_squeeze()
check_broadcast_div()
check_size()
check_copy()
check_copy_to()
check_zeros_like()
check_ones_like()
check_shape()
check_concat()
check_slice_like()
check_slice_axis()
check_gather()
check_infer_shape()
check_astype()
check_cast()
check_load_save()
check_binary_broadcast()
@pytest.mark.timeout(0)
def test_basic():
def check_elementwise():
a = nd.ones(shape=LARGE_X)
b = nd.ones(shape=LARGE_X)
res = a + b
assert res[-1].asnumpy() == 2
res = a + 1
assert res[-1].asnumpy() == 2
res = nd.sqrt(a + 8)
assert res[-1].asnumpy() == 3
def check_argmin():
a = create_vector(LARGE_X, dtype=np.float32)
assert a[0] == 0
idx = mx.nd.argmin(a, axis=0)
assert idx[0] == 0
assert idx.shape[0] == 1
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, " +
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_argsort():
a = create_vector(size=LARGE_X)
s = nd.argsort(a, axis=0, is_ascend=False, dtype=np.int64)
assert s[0] == (LARGE_X - 1)
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, " +
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_sort():
a = create_vector(size=LARGE_X)
def check_descend(x):
s = nd.sort(x, axis=0, is_ascend=False)
assert s[-1] == 0
def check_ascend(x):
s = nd.sort(x, is_ascend=True)
assert s[0] == 0
check_descend(a)
check_ascend(a)
@pytest.mark.skip(reason="Memory doesn't free up after stacked execution with other ops, " +
"tracked at https://github.com/apache/mxnet/issues/17411")
def check_topk():
a = create_vector(size=LARGE_X)
ind = nd.topk(a, k=10, axis=0, dtype=np.int64)
for i in range(10):
assert ind[i] == (LARGE_X - i - 1)
ind, val = mx.nd.topk(a, k=3, axis=0, dtype=np.int64, ret_typ="both", is_ascend=False)
assert np.all(ind == val)
val = nd.topk(a, k=1, axis=0, dtype=np.int64, ret_typ="value")
assert val == (LARGE_X - 1)
def check_mean():
a = nd.arange(-LARGE_X // 2, LARGE_X // 2 + 1, dtype=np.int64)
b = nd.mean(a, axis=0)
assert b == 0
def check_exponent_logarithm_operators():
a = 2*nd.ones(shape=LARGE_X)
# exponent
result = nd.exp(a)
assert result[-1] == 7.389056
assert result.shape == a.shape
# exponent minus 1
result = nd.expm1(a)
assert result[-1] == 6.389056
assert result.shape == a.shape
# log2
result = nd.log2(a)
assert result[-1] == 1
assert result.shape == a.shape
# log10
result = nd.log10(a)
assert result[-1] == 0.30103
assert result.shape == a.shape
# log1p
result = nd.log1p(a)
assert result[-1] == 1.0986123
assert result.shape == a.shape
# log
result = nd.log(a)
assert result[-1] == 0.6931472
assert result.shape == a.shape
def check_power_operators():
a = 2*nd.ones(shape=LARGE_X)
# sqrt
result = nd.sqrt(a)
assert result[-1] == 1.4142135
assert result.shape == a.shape
# rsqrt
result = nd.rsqrt(a)
assert result[-1] == 0.70710677
assert result.shape == a.shape
# cbrt
result = nd.cbrt(a)
assert result[-1] == 1.2599211
assert result.shape == a.shape
# rcbrt
result = nd.rcbrt(a)
assert result[-1] == 0.7937005
assert result.shape == a.shape
# square
result = nd.square(a)
assert result[-1] == 4
assert result.shape == a.shape
# reciprocal
result = nd.reciprocal(a)
assert result[-1] == 0.5
assert result.shape == a.shape
def check_add():
a = nd.ones(shape=LARGE_X)
b = nd.ones(shape=LARGE_X)
c = b
c = c.__add__(a)
assert c[-1] == 2
assert c.shape == a.shape
def check_sub():
a = 3*nd.ones(shape=LARGE_X)
b = nd.ones(shape=LARGE_X)
c = b
c = c.__sub__(a)
assert c[-1] == -2
assert c.shape == a.shape
def check_rsub():
a = 3*nd.ones(shape=LARGE_X)
b = nd.ones(shape=LARGE_X)
c = b
c = c.__rsub__(a)
assert c[-1] == 2
assert c.shape == a.shape
def check_neg():
a = nd.ones(shape=LARGE_X)
c = a
c = c.__neg__()
assert c[-1] == -1
assert c.shape == a.shape
def check_mul():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__mul__(a)
assert c[-1] == 6
assert c.shape == a.shape
def check_div():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__div__(a)
assert c[-1] == 3/2
assert c.shape == a.shape
def check_rdiv():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__rdiv__(a)
assert c[-1] == 2/3
assert c.shape == a.shape
def check_mod():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__mod__(a)
assert c[-1] == 1
assert c.shape == a.shape
def check_rmod():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__rmod__(a)
assert c[-1] == 2
assert c.shape == a.shape
def check_imod():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__imod__(a)
assert c[-1] == 1
assert c.shape == a.shape
def check_pow():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__pow__(a)
assert c[-1] == 9
assert c.shape == a.shape
def check_rpow():
a = 2*nd.ones(shape=LARGE_X)
b = 3*nd.ones(shape=LARGE_X)
c = b
c = c.__rpow__(a)
assert c[-1] == 8
assert c.shape == a.shape
def check_sum():
a = nd.ones(LARGE_X)
b = nd.sum(a, axis=0)
assert b[0] == LARGE_X
def check_prod():
a = nd.ones(LARGE_X)
b = nd.prod(a, axis=0)
assert b[0] == 1
def check_min():
a = create_vector(size=LARGE_X)
b = nd.min(a, axis=0)
assert b[0] == 0
assert b[-1] == 0
def check_max():
a = create_vector(size=LARGE_X)
b = nd.max(a, axis=0)
assert b[0] == (LARGE_X - 1)
def check_argmax():
a = nd.ones(LARGE_X)
b = nd.zeros(LARGE_X)
c = nd.concat(a, b, dim=0)
d = nd.argmax(c, axis=0)
assert c.shape[0] == (2 * LARGE_X)
assert d == 0
def check_iadd():
a = nd.ones(LARGE_X)
b = nd.ones(LARGE_X)
c = b
c += a
assert c.shape == a.shape
assert c[-1] == 2
def check_isub():
a = nd.full(LARGE_X, 3)
b = nd.ones(LARGE_X)
c = a
c -= b
assert c.shape == a.shape
assert c[-1] == 2
def check_imul():
a = nd.full(LARGE_X, 3)
b = nd.ones(LARGE_X)
c = b
c *= a
assert c.shape == a.shape
assert c[-1] == 3
def check_idiv():
a = nd.full(LARGE_X, 4)
b = nd.full(LARGE_X, 2)
c = a
c /= b
assert c.shape == a.shape
assert c[-1] == 2
def check_eq():
a = nd.full(LARGE_X, 3)
b = nd.full(LARGE_X, 3)
c = (a == b)
assert (c.asnumpy() == 1).all()
def check_neq():
a = nd.full(LARGE_X, 2)
b = nd.full(LARGE_X, 3)
c = (a != b)
assert (c.asnumpy() == 1).all()
def check_lt():
a = nd.full(LARGE_X, 2)
b = nd.full(LARGE_X, 3)
d = (a <= b)
assert (d.asnumpy() == 1).all()
def check_lte():
a = nd.full(LARGE_X, 2)
b = nd.full(LARGE_X, 3)
c = nd.full(LARGE_X, 2)
d = (a <= b)
assert (d.asnumpy() == 1).all()
d = (a <= c)
assert (d.asnumpy() == 1).all()
def check_gt():
a = nd.full(LARGE_X, 3)
b = nd.full(LARGE_X, 2)
d = (a > b)
assert (d.asnumpy() == 1).all()
def check_gte():
a = nd.full(LARGE_X, 3)
b = nd.full(LARGE_X, 2)
c = nd.full(LARGE_X, 3)
d = (a >= b)
assert (d.asnumpy() == 1).all()
d = (a >= c)
assert (d.asnumpy() == 1).all()
def check_logical():
def check_logical_and(a, b):
mx_res = mx.nd.logical_and(a, b)
assert_almost_equal(mx_res[-1].asnumpy(), np.logical_and(a[-1].asnumpy(), b[-1].asnumpy()))
def check_logical_or(a, b):
mx_res = mx.nd.logical_or(a, b)
assert_almost_equal(mx_res[-1].asnumpy(), np.logical_or(a[-1].asnumpy(), b[-1].asnumpy()))
def check_logical_not(a, b):
mx_res = mx.nd.logical_not(a, b)
assert_almost_equal(mx_res[-1].asnumpy(), np.logical_not(a[-1].asnumpy(), b[-1].asnumpy()))
def check_logical_xor(a, b):
mx_res = mx.nd.logical_xor(a, b)
assert_almost_equal(mx_res[-1].asnumpy(), np.logical_xor(a[-1].asnumpy(), b[-1].asnumpy()))
a = mx.nd.ones(LARGE_X)
b = mx.nd.zeros(LARGE_X)
check_logical_and(a, b)
check_logical_or(a, b)
check_logical_not(a, b)
check_logical_xor(a, b)
def create_input_for_rounding_ops():
# Creates an vector with values (-LARGE/2 .... -2, -1, 0, 1, 2, .... , LARGE/2-1)
# then divides each element by 2 i.e (-LARGE/4 .... -1, -0.5, 0, 0.5, 1, .... , LARGE/4-1)
inp = nd.arange(-LARGE_X//2, LARGE_X//2, dtype=np.float64)
inp = inp/2
return inp
def assert_correctness_of_rounding_ops(output, mid, expected_vals):
# checks verifies 5 values at the middle positions of the input vector
# i.e mid-2, mid-1, mid, mid+1, mid+2
output_idx_to_inspect = [mid-2, mid-1, mid, mid+1, mid+2]
for i in range(len(output_idx_to_inspect)):
assert output[output_idx_to_inspect[i]] == expected_vals[i]
def check_rounding_ops():
x = create_input_for_rounding_ops()
def check_ceil():
y = nd.ceil(x)
# expected ouput for middle 5 values after applying ceil()
expected_output = [-1, 0, 0, 1, 1]
assert_correctness_of_rounding_ops(y, LARGE_X//2, expected_output)
def check_fix():
y = nd.fix(x)
# expected ouput for middle 5 values after applying fix()
expected_output = [-1, 0, 0, 0, 1]
assert_correctness_of_rounding_ops(y, LARGE_X//2, expected_output)
def check_floor():
y = nd.floor(x)
# expected ouput for middle 5 values after applying floor()
expected_output = [-1, -1, 0, 0, 1]
assert_correctness_of_rounding_ops(y, LARGE_X//2, expected_output)
def check_rint():
y = nd.rint(x)
# expected ouput for middle 5 values after applying rint()
expected_output = [-1, -1, 0, 0, 1]
assert_correctness_of_rounding_ops(y, LARGE_X//2, expected_output)
def check_round():
y = nd.round(x)
# expected ouput for middle 5 values after applying round()
expected_output = [-1, -1, 0, 1, 1]
assert_correctness_of_rounding_ops(y, LARGE_X//2, expected_output)
def check_trunc():
y = nd.trunc(x)
# expected ouput for middle 5 values after applying trunc()
expected_output = [-1, 0, 0, 0, 1]
assert_correctness_of_rounding_ops(y, LARGE_X//2, expected_output)
check_ceil()
check_fix()
check_floor()
check_rint()
check_round()
check_trunc()
def create_input_for_trigonometric_ops(vals):
# Creates large vector input of size(LARGE_X) from vals using tile operator
inp = nd.array(vals)
inp = nd.tile(inp, LARGE_X//len(vals))
return inp
def assert_correctness_of_trigonometric_ops(output, expected_vals):
# checks verifies 5 values at positions(0, 1, -3, -2, -1) of the input vector
output_idx_to_inspect = [0, 1, -3, -2, -1]
for i in range(len(output_idx_to_inspect)):
assert np.abs(output[output_idx_to_inspect[i]].asnumpy()-expected_vals[i]) <= 1e-3
def check_trigonometric_ops():
def check_arcsin():
x = create_input_for_trigonometric_ops([-1, -.707, 0, .707, 1])
y = nd.arcsin(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying arcsin()
expected_output = [-np.pi/2, -np.pi/4, 0, np.pi/4, np.pi/2]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_arccos():
x = create_input_for_trigonometric_ops([-1, -.707, 0, .707, 1])
y = nd.arccos(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying arccos()
expected_output = [np.pi, 3*np.pi/4, np.pi/2, np.pi/4, 0]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_arctan():
x = create_input_for_trigonometric_ops([-np.Inf, -1, 0, 1, np.Inf])
y = nd.arctan(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying arctan()
expected_output = [-np.pi/2, -np.pi/4, 0, np.pi/4, np.pi/2]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_sin():
x = create_input_for_trigonometric_ops([-np.pi/2, -np.pi/4, 0, np.pi/4, np.pi/2])
y = nd.sin(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying sin()
expected_output = [-1, -.707, 0, .707, 1]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_cos():
x = create_input_for_trigonometric_ops([0, np.pi/4, np.pi/2, 3*np.pi/4, np.pi])
y = nd.cos(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying cos()
expected_output = [1, .707, 0, -.707, -1]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_tan():
x = create_input_for_trigonometric_ops([-np.pi/6, -np.pi/4, 0, np.pi/4, np.pi/6])
y = nd.tan(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying tan()
expected_output = [-.577, -1, 0, 1, .577]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_arcsinh():
x = create_input_for_trigonometric_ops([-np.pi/2, -np.pi/4, 0, np.pi/4, np.pi/2])
y = nd.arcsinh(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying arcsinh()
expected_output = [np.arcsinh(-np.pi/2), np.arcsinh(-np.pi/4), 0, np.arcsinh(np.pi/4), np.arcsinh(np.pi/2)]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_arccosh():
x = create_input_for_trigonometric_ops([1, np.pi/2, 3*np.pi/4, np.pi, 5*np.pi/4])
y = nd.arccosh(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying arccosh()
expected_output = [0, np.arccosh(np.pi/2), np.arccosh(3*np.pi/4), np.arccosh(np.pi), np.arccosh(5*np.pi/4)]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_arctanh():
x = create_input_for_trigonometric_ops([-1/4, -1/2, 0, 1/4, 1/2])
y = nd.arctanh(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying arctanh()
expected_output = [np.arctanh(-1/4), np.arctanh(-1/2), 0, np.arctanh(1/4), np.arctanh(1/2)]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_sinh():
x = create_input_for_trigonometric_ops([-np.pi/2, -np.pi/4, 0, np.pi/4, np.pi/2])
y = nd.sinh(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying sinh()
expected_output = [np.sinh(-np.pi/2), np.sinh(-np.pi/4), 0, np.sinh(np.pi/4), np.sinh(np.pi/2)]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_cosh():
x = create_input_for_trigonometric_ops([0, 1, np.pi/2, 3*np.pi/4, np.pi])
y = nd.cosh(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying cosh()
expected_output = [1, np.cosh(1), np.cosh(np.pi/2), np.cosh(3*np.pi/4), np.cosh(np.pi)]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_tanh():
x = create_input_for_trigonometric_ops([-1/4, -1/2, 0, 1/4, 1/2])
y = nd.tanh(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying tanh()
expected_output = [np.tanh(-1/4), np.tanh(-1/2), 0, np.tanh(1/4), np.tanh(1/2)]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_radians():
x = create_input_for_trigonometric_ops([0, 90, 180, 270, 360])
y = nd.radians(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying radians()
expected_output = [0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi]
assert_correctness_of_trigonometric_ops(y, expected_output)
def check_degrees():
x = create_input_for_trigonometric_ops([0, np.pi/2, np.pi, 3*np.pi/2, 2*np.pi])
y = nd.degrees(x)
# expected ouput for indices=(0, 1, -3, -2, -1) after applying degrees()
expected_output = [0, 90, 180, 270, 360]
assert_correctness_of_trigonometric_ops(y, expected_output)
check_arcsin()
check_arccos()
check_arctan()
check_sin()
check_cos()
check_tan()
check_arcsinh()
check_arccosh()
check_arctanh()
check_sinh()
check_cosh()
check_tanh()
check_radians()
check_degrees()
def check_add_n():
x = [nd.ones(LARGE_X)]
y = nd.add_n(*x)
assert y[0] == 1
assert y[-1] == 1
def check_modulo():
x = mx.nd.ones(LARGE_X)*6
y = mx.nd.ones(LARGE_X)*4
z = (x % y)
assert z[0] == 2
assert z[-1] == 2
x = mx.nd.ones(LARGE_X)*5
z = nd.modulo(x, y)
assert z[0] == 1
assert z[-1] == 1
def check_maximum():
x = mx.nd.ones(LARGE_X)*3
y = mx.nd.ones(LARGE_X)*4
z = nd.maximum(x, y)
assert z[0] == 4
assert z[-1] == 4
z = nd.maximum(x, 5)
assert z[0] == 5
assert z[-1] == 5
def check_minimum():
x = mx.nd.ones(LARGE_X)*3
y = mx.nd.ones(LARGE_X)*2
z = nd.minimum(x, y)
assert z[0] == 2
assert z[-1] == 2
z = nd.minimum(x, 5)
assert z[0] == 3
assert z[-1] == 3
check_elementwise()
check_argmin()
check_argsort()
check_sort()
check_topk()
check_mean()
check_exponent_logarithm_operators()
check_power_operators()
check_add()
check_sub()
check_rsub()
check_neg()
check_mul()
check_div()
check_rdiv()
check_mod()
check_rmod()
check_imod()
check_pow()
check_rpow()
check_sum()
check_prod()
check_min()
check_max()
check_argmax()
check_iadd()
check_isub()
check_imul()
check_idiv()
check_eq()
check_neq()
check_lt()
check_lte()
check_gt()
check_gte()
check_logical()
check_rounding_ops()
check_trigonometric_ops()
check_add_n()
check_modulo()
check_maximum()
check_minimum()