| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file activation_perf.cc |
| * \brief Perf/profile run of ActivationOp |
| * \author Chris Olivier |
| */ |
| |
| #include <gtest/gtest.h> |
| #include <mxnet/tensor_blob.h> |
| #include "../../src/operator/nn/activation-inl.h" |
| #include "../include/test_op_runner.h" |
| #include "../include/test_core_op.h" |
| |
| using namespace mxnet; |
| |
| using kwargs_t = test::op::kwargs_t; |
| |
| template <typename DType = float> |
| static void RunCoreOpBidirectional(const bool isGPU, |
| const kwargs_t& op_kwargs, |
| const char* op_name, |
| const char* backward_op_name = "") { |
| const mxnet::TShape shape({5, 5}); |
| test::op::CoreOpExecutor<DType> op(isGPU, {shape}); |
| op.set_verbose(false); |
| |
| op.Init(op.ArgsWithOpName(op_kwargs, op_name, backward_op_name)); |
| |
| PRINT_NDARRAYS(op.ctx().run_ctx, op.inputs()); |
| PRINT_NDARRAYS(op.ctx().run_ctx, op.outputs()); |
| op.Execute(); |
| PRINT_NDARRAYS(op.ctx().run_ctx, op.outputs()); |
| if (op.HasBackward()) { |
| PRINT_NDARRAYS(op.ctx().run_ctx, op.bwd_inputs()); |
| PRINT_NDARRAYS(op.ctx().run_ctx, op.bwd_outputs()); |
| op.ExecuteBackward(); |
| PRINT_NDARRAYS(op.ctx().run_ctx, op.bwd_outputs()); |
| } |
| } |
| |
| template <typename DType = float> |
| static void RunCoreOpTimingTest(const bool isGPU, |
| const kwargs_t& op_kwargs, |
| const char* op_name, |
| const char* backward_op_name = "") { |
| const kwargs_t kwargs = |
| test::op::CoreOpExecutor<DType>::ArgsWithOpName(op_kwargs, op_name, backward_op_name); |
| |
| // prime code and cache before the performance runs |
| test::op::CoreOperatorRunner<DType> runner; |
| runner.RunBidirectional(false, {{20, 3, 128, 128}}, kwargs, 1); |
| |
| // Do the performance runs |
| std::vector<mxnet::TShape> shapes; |
| if (test::performance_run) { |
| shapes = {{1, 1, 28, 28}, {1, 3, 28, 28}, {50, 1, 18, 32}, {50, 3, 18, 32}, {20, 3, 128, 128}}; |
| } else { |
| shapes = { |
| {1, 1, 28, 28}, |
| {50, 3, 18, 32}, |
| }; |
| } |
| const char* pu = isGPU ? "GPU" : "CPU"; |
| for (const mxnet::TShape& shape : shapes) { |
| runner.TimingTest( |
| std::string(op_name) + " Operator " + pu, isGPU, false, kwargs, 2, 10, {shape}); |
| } |
| } |
| |
| /*! |
| * \brief Generic bidirectional sanity test |
| */ |
| TEST(COREOP_PERF, ExecuteBidirectional) { |
| std::cout << "NEGATIVE CLIP GRADIENT" << std::endl; |
| RunCoreOpBidirectional(false, |
| {{"lr", "0.01"}, {"clip_gradient", "-1"}}, |
| "sgd_mom_update", |
| COREOP_BWD_OP_NAME_VALUE_NONE); |
| std::cout << "POSITIVE CLIP GRADIENT" << std::endl; |
| RunCoreOpBidirectional(false, |
| {{"lr", "0.01"}, {"clip_gradient", "1"}}, |
| "sgd_mom_update", |
| COREOP_BWD_OP_NAME_VALUE_NONE); |
| } |
| |
| /*! |
| * \brief ActivationOp timing test for CPU |
| */ |
| TEST(COREOP_PERF, TimingCPU) { |
| std::cout << "NEGATIVE CLIP GRADIENT" << std::endl; |
| RunCoreOpTimingTest(false, |
| {{"lr", "0.01"}, {"clip_gradient", "-1"}}, |
| "sgd_mom_update", |
| COREOP_BWD_OP_NAME_VALUE_NONE); |
| std::cout << "POSITIVE CLIP GRADIENT" << std::endl; |
| RunCoreOpTimingTest(false, |
| {{"lr", "0.01"}, {"clip_gradient", "1"}}, |
| "sgd_mom_update", |
| COREOP_BWD_OP_NAME_VALUE_NONE); |
| } |
| |
| #if MXNET_USE_CUDA == 1 |
| /*! |
| * \brief ActivationOp timing test for GPU |
| */ |
| TEST(COREOP_PERF, TimingGPU) { |
| std::cout << "NEGATIVE CLIP GRADIENT" << std::endl; |
| RunCoreOpTimingTest(true, |
| {{"lr", "0.01"}, {"clip_gradient", "-1"}}, |
| "sgd_mom_update", |
| COREOP_BWD_OP_NAME_VALUE_NONE); |
| std::cout << "POSITIVE CLIP GRADIENT" << std::endl; |
| RunCoreOpTimingTest(true, |
| {{"lr", "0.01"}, {"clip_gradient", "1"}}, |
| "sgd_mom_update", |
| COREOP_BWD_OP_NAME_VALUE_NONE); |
| } |
| #endif // MXNET_USE_CUDA == 1 |