blob: 84bd4a5eee250be67783adf9dfce5119b0b85cae [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file index_add-inl.cc
* \brief CPU implementation of index_add operator
*/
#include <vector>
#include "./index_add-inl.h"
namespace mxnet {
namespace op {
template <typename DType>
void IndexAddBackwardValCPUCompute(DType* grad_val,
const DType* ograd,
const int* ind_vec,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> ograd_tail_shape,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> ograd_pre_stride,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> val_stride,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> val_shape,
const int ograd_tail_size,
const int ind_num,
const int ind_ndim,
const int out_ndim,
const int seg) {
#pragma omp parallel for num_threads(engine::OpenMP::Get()->GetRecommendedOMPThreadCount())
for (index_t i = 0; i < static_cast<index_t>(ind_num); ++i) {
index_t id = 0;
for (int dim = 0; dim < ind_ndim; ++dim) {
id += ograd_pre_stride[seg + dim] * ind_vec[dim * ind_num + i];
}
id *= ograd_tail_size;
for (int _i = 0; _i < ograd_tail_size; ++_i) {
mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> ograd_tail_id =
mxnet_op::unravel(_i, ograd_tail_shape);
mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> val_id;
for (int _j = 0; _j < seg; ++_j) {
val_id[_j] = 0;
}
for (int _j = seg; _j < seg + out_ndim; ++_j) {
val_id[_j] = (val_shape[_j] == 1) ? 0 : ograd_tail_id[_j];
}
val_id[seg + ind_ndim - 1] = (val_shape[seg + ind_ndim - 1] == 1) ? 0 : i;
index_t val_dest = mxnet_op::dot(val_id, val_stride);
#pragma omp critical
{ grad_val[val_dest] += ograd[id + _i]; }
}
}
}
template <>
void IndexAddOpBackwardValImpl<cpu>(const OpContext& ctx,
const TBlob& grad_val,
const TBlob& ograd,
const TBlob& t_ind,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> ograd_tail_shape,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> ograd_pre_stride,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> val_stride,
const mshadow::Shape<MXNET_SPECIAL_MAX_NDIM> val_shape,
const int tail_size,
const int ind_num,
const int ind_ndim,
const int ndim) {
using namespace mshadow;
using namespace mxnet_op;
int seg = MXNET_SPECIAL_MAX_NDIM - ndim;
MSHADOW_TYPE_SWITCH(grad_val.type_flag_, DType, {
IndexAddBackwardValCPUCompute<DType>(grad_val.dptr<DType>(),
ograd.dptr<DType>(),
t_ind.dptr<int>(),
ograd_tail_shape,
ograd_pre_stride,
val_stride,
val_shape,
tail_size,
ind_num,
ind_ndim,
ndim,
seg);
});
}
NNVM_REGISTER_OP(_backward_index_add_val)
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", IndexAddOpBackwardVal<cpu>);
} // namespace op
} // namespace mxnet