| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file broadcast_reduce_sum_value.cc |
| * \brief CPU Implementation of broadcast and reduce sum (and related) functions based on value. |
| */ |
| #include "./broadcast_reduce_op.h" |
| #include "../numpy/np_broadcast_reduce_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| MXNET_OPERATOR_REGISTER_REDUCE(sum) |
| MXNET_ADD_SPARSE_OP_ALIAS(sum) |
| .add_alias("sum_axis") |
| .describe(R"code(Computes the sum of array elements over given axes. |
| |
| .. Note:: |
| |
| `sum` and `sum_axis` are equivalent. |
| For ndarray of csr storage type summation along axis 0 and axis 1 is supported. |
| Setting keepdims or exclude to True will cause a fallback to dense operator. |
| |
| Example:: |
| |
| data = [[[1, 2], [2, 3], [1, 3]], |
| [[1, 4], [4, 3], [5, 2]], |
| [[7, 1], [7, 2], [7, 3]]] |
| |
| sum(data, axis=1) |
| [[ 4. 8.] |
| [ 10. 9.] |
| [ 21. 6.]] |
| |
| sum(data, axis=[1,2]) |
| [ 12. 19. 27.] |
| |
| data = [[1, 2, 0], |
| [3, 0, 1], |
| [4, 1, 0]] |
| |
| csr = cast_storage(data, 'csr') |
| |
| sum(csr, axis=0) |
| [ 8. 3. 1.] |
| |
| sum(csr, axis=1) |
| [ 3. 4. 5.] |
| |
| )code" ADD_FILELINE) |
| .set_attr<FCompute>("FCompute<cpu>", ReduceAxesCompute<cpu, mshadow::red::sum>) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", ReduceAxesOpForwardEx<cpu, mshadow::red::sum>) |
| .set_attr<FInferStorageType>("FInferStorageType", ReduceAxesOpForwardStorage) |
| #if MXNET_USE_ONEDNN == 1 |
| .set_attr<bool>("TIsMKLDNN", true) |
| #endif |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_sum"}); |
| |
| MXNET_OPERATOR_REGISTER_REDUCE_BACKWARD(_backward_sum) |
| .set_num_inputs(1) |
| .set_attr<FCompute>("FCompute<cpu>", ReduceAxesBackwardUseNone<cpu>); |
| |
| MXNET_OPERATOR_REGISTER_REDUCE(mean) |
| MXNET_ADD_SPARSE_OP_ALIAS(mean) |
| .describe(get_reduce_axes_description("mean", __LINE__)) |
| .set_attr<FCompute>("FCompute<cpu>", ReduceAxesCompute<cpu, mshadow::red::sum, true>) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", ReduceAxesOpForwardEx<cpu, mshadow::red::sum, true>) |
| .set_attr<FInferStorageType>("FInferStorageType", ReduceAxesOpForwardStorage) |
| #if MXNET_USE_ONEDNN == 1 |
| .set_attr<bool>("TIsMKLDNN", true) |
| #endif |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_mean"}); |
| |
| MXNET_OPERATOR_REGISTER_REDUCE_BACKWARD(_backward_mean) |
| .set_num_inputs(1) |
| .set_attr<FCompute>("FCompute<cpu>", ReduceAxesBackwardUseNone<cpu, true>); |
| |
| MXNET_OPERATOR_REGISTER_REDUCE(nansum) |
| .describe( |
| R"code(Computes the sum of array elements over given axes treating Not a Numbers (``NaN``) as zero. |
| |
| )code" ADD_FILELINE) |
| .set_attr<FCompute>("FCompute<cpu>", ReduceAxesCompute<cpu, mshadow_op::nansum>) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .set_attr<nnvm::FGradient>("FGradient", ReduceGrad{"_backward_nansum"}); |
| |
| MXNET_OPERATOR_REGISTER_REDUCE_BACKWARD(_backward_nansum) |
| .set_num_inputs(3) |
| .set_attr<FCompute>("FCompute<cpu>", ReduceAxesBackwardUseInOut<cpu, mshadow_op::nansum_grad>); |
| |
| } // namespace op |
| } // namespace mxnet |