| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file broadcast_reduce_norm_value.cc |
| * \brief CPU Implementation of broadcast and reduce norm functions based on value. |
| */ |
| #include "./broadcast_reduce_op.h" |
| |
| namespace mxnet { |
| namespace op { |
| DMLC_REGISTER_PARAMETER(NormParam); |
| |
| template <> |
| void L2NormComputeEx<cpu>(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| CHECK_EQ(inputs.size(), 1U); |
| CHECK_EQ(outputs.size(), 1U); |
| CHECK_EQ(req.size(), 1U); |
| const NormParam& param = nnvm::get<NormParam>(attrs.parsed); |
| mshadow::Stream<cpu>* s = ctx.get_stream<cpu>(); |
| const NDArrayStorageType istype = inputs[0].storage_type(); |
| const mxnet::TShape axis = param.axis.has_value() ? param.axis.value() : mxnet::TShape(0, -1); |
| if ((istype == kRowSparseStorage || istype == kCSRStorage) && axis.ndim() == 0 && |
| param.ord == 2) { |
| // l2 norm on the entire array |
| L2NormComputeSparseImpl<cpu>(s, inputs[0], req[0], outputs[0].data()); |
| } else if (istype == kCSRStorage && axis.ndim() == 1 && (axis[0] == 0 || axis[0] == 1) && |
| !param.keepdims && param.ord == 2) { |
| // l2 norm on a particular axis |
| NDArray output = outputs[0]; |
| ReduceCsrImpl<cpu, sq_sum, false>(s, ctx, inputs[0], req[0], &output, axis); |
| CHECK_EQ(outputs[0].storage_type(), kDefaultStorage); |
| SqRootForL2<cpu>(ctx, req[0], outputs[0].data()); |
| } else { |
| LogUnimplementedOp(attrs, ctx, inputs, req, outputs); |
| } |
| } |
| |
| NNVM_REGISTER_OP(norm) |
| MXNET_ADD_SPARSE_OP_ALIAS(norm) |
| .describe(R"code(Computes the norm on an NDArray. |
| |
| This operator computes the norm on an NDArray with the specified axis, depending |
| on the value of the ord parameter. By default, it computes the L2 norm on the entire |
| array. Currently only ord=2 supports sparse ndarrays. |
| |
| Examples:: |
| |
| x = [[[1, 2], |
| [3, 4]], |
| [[2, 2], |
| [5, 6]]] |
| |
| norm(x, ord=2, axis=1) = [[3.1622777 4.472136 ] |
| [5.3851647 6.3245554]] |
| |
| norm(x, ord=1, axis=1) = [[4., 6.], |
| [7., 8.]] |
| |
| rsp = x.cast_storage('row_sparse') |
| |
| norm(rsp) = [5.47722578] |
| |
| csr = x.cast_storage('csr') |
| |
| norm(csr) = [5.47722578] |
| |
| )code" ADD_FILELINE) |
| .add_alias("_npx_norm") |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<NormParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", NormShape) |
| .set_attr<nnvm::FInferType>("FInferType", NormType) |
| .set_attr<FInferStorageType>("FInferStorageType", LpNormStorageType) |
| .set_attr<nnvm::FGradient>("FGradient", ReduceGrad{"_backward_norm"}) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .set_attr<FCompute>("FCompute<cpu>", LpNormCompute<cpu>) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", L2NormComputeEx<cpu>) |
| .add_argument("data", "NDArray-or-Symbol", "The input") |
| .add_arguments(NormParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_norm) |
| .set_num_inputs(3) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<NormParam>) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", LpNormGradCompute<cpu>); |
| |
| } // namespace op |
| } // namespace mxnet |