blob: b7edc70c5bd86abd73c7f5da859dabbf756fc0c7 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#ifndef MXNET_OPERATOR_SUBGRAPH_OP_COMMON_H_
#define MXNET_OPERATOR_SUBGRAPH_OP_COMMON_H_
#include <mxnet/io.h>
#include <mxnet/base.h>
#include <mxnet/op_attr_types.h>
#include <vector>
#include <utility>
#include <string>
#include "../imperative/cached_op.h"
#include "../imperative/imperative_utils.h"
namespace mxnet {
namespace op {
/*
* Infer the data types of inputs and outputs of an operator that contains a
* subgraph.
*/
bool InferSubgraphDataType(const nnvm::Symbol& subgraph,
std::vector<int>* in_type,
std::vector<int>* out_type);
/*
* Infer the shape of inputs and outputs of an operator that contains a
* subgraph.
*/
bool InferSubgraphShape(const nnvm::Symbol& subgraph,
mxnet::ShapeVector* in_shape,
mxnet::ShapeVector* out_shape);
/*
* Infer the storage types of inputs and outputs of an operator that contains a
* subgraph.
*/
bool InferSubgraphStorage(const nnvm::Symbol& subgraph,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs);
bool as_bool_scalar(const NDArray& a);
bool is_shape_udf(const mxnet::TShape& x);
bool is_stype_udf(const int& x);
bool is_type_udf(const int& x);
template <typename T>
void extract_by_loc(const std::vector<T>& array,
const mxnet::Tuple<dim_t> input_locs,
std::vector<T>* out) {
out->clear();
out->reserve(input_locs.ndim());
for (dim_t i : input_locs) {
out->push_back(array[i]);
}
}
template <typename T>
bool fill_value(T* x, T* y, bool x_empty, bool y_empty) {
if (*x == *y || (x_empty && y_empty)) {
return true;
}
if (!x_empty && !y_empty) {
return false;
}
if (x_empty) {
*x = *y;
}
if (y_empty) {
*y = *x;
}
return true;
}
template <typename T>
bool sync_in_in(const mxnet::Tuple<dim_t>& input_locs,
std::vector<T>* in,
std::vector<T>* subg_in,
std::function<bool(const T&)> is_empty) {
for (int i = 0; i < input_locs.ndim(); ++i) {
T& x = in->at(input_locs[i]);
T& y = subg_in->at(i);
fill_value(&x, &y, is_empty(x), is_empty(y));
}
return true;
}
template <typename T>
bool sync_out_out(std::vector<T>* out_1,
std::vector<T>* out_2,
std::function<bool(const T&)> is_empty) {
CHECK_EQ(out_1->size(), out_2->size());
for (size_t i = 0; i < out_1->size(); ++i) {
T& x = out_1->at(i);
T& y = out_2->at(i);
fill_value(&x, &y, is_empty(x), is_empty(y));
}
return true;
}
/*
* This contains the states for running a loop and provides methods
* of running the subgraph computation for an iteration.
*/
class LoopState {
// These are output arrays from all iterations.
// They also contain the Op state for each CachedOp.
std::vector<std::vector<NDArray> > all_outputs;
std::vector<std::vector<NDArray> > all_inputs;
// For inference, there should be only one cached op because we
// want to share the memory in iterations.
// For training, each iteration has a cached op because each iteration
// needs to maintain a set of memory buffers for all computation states,
// which will be used in the backward.
std::vector<OpStatePtr> all_states;
CachedOpPtr iter_op;
nnvm::Symbol subgraph_sym;
nnvm::Graph subgraph;
public:
explicit LoopState(const nnvm::Symbol& g, bool is_dynamic = true);
void Forward(int iter_no,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs,
bool is_recording);
void Backward(int iter_no,
const std::vector<NDArray>& ograds,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& igrads);
void Cleanup() {
all_outputs.clear();
all_inputs.clear();
all_states.clear();
}
static CachedOpPtr MakeSharedOp(const nnvm::Symbol& sym, bool is_dynamic = true) {
// We turn on static_alloc for two reasons.
// It avoids the overhead of unnecessary memory allocation.
// only static_alloc supports nested call of CachedOp.
std::vector<std::pair<std::string, std::string> > kwargs = {{"inline_limit", "0"},
{"static_alloc", "1"}};
if (is_dynamic) {
kwargs.push_back({"is_dynamic", "1"});
} else {
kwargs.push_back({"is_dynamic", "0"});
}
return std::make_shared<CachedOp>(sym, kwargs);
}
};
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_SUBGRAPH_OP_COMMON_H_