blob: e5df6ac860dc0eaefa04ee783df4d71a22a38220 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file spatial_transformer.cc
* \brief
* \author Wei Wu
*/
#include "./spatial_transformer-inl.h"
namespace mshadow {
template <typename DType>
static MSHADOW_CINLINE bool between(const DType value,
const DType lowerBound,
const DType upperBound) {
return value >= lowerBound && value <= upperBound;
}
template <typename DType>
inline void BilinearSamplingForward(const Tensor<cpu, 4, DType>& output,
const Tensor<cpu, 4, DType>& input,
const Tensor<cpu, 3, DType> grid_src) {
DType* out = output.dptr_;
const DType* data = input.dptr_;
const DType* grid = grid_src.dptr_;
const index_t o_n = output.size(0), o_c = output.size(1), o_h = output.size(2),
o_w = output.size(3);
const index_t i_c = input.size(1), i_h = input.size(2), i_w = input.size(3);
for (index_t n = 0; n < static_cast<index_t>(o_n); ++n) {
for (index_t c = 0; c < static_cast<index_t>(o_c); ++c) {
for (index_t h = 0; h < static_cast<index_t>(o_h); ++h) {
for (index_t w = 0; w < static_cast<index_t>(o_w); ++w) {
const index_t out_index = n * o_c * o_h * o_w + c * o_h * o_w + h * o_w + w;
const index_t grid_index = n * o_h * o_w * 2 + h * o_w + w;
const DType y_real = (*(grid + grid_index + o_h * o_w) + 1) * (i_h - 1) / 2;
const DType x_real = (*(grid + grid_index) + 1) * (i_w - 1) / 2;
const auto top_left_y = static_cast<index_t>(std::floor(y_real));
const auto top_left_x = static_cast<index_t>(std::floor(x_real));
const DType top_left_y_w = 1.0 - (y_real - top_left_y);
const DType top_left_x_w = 1.0 - (x_real - top_left_x);
const index_t data_index =
n * i_c * i_h * i_w + c * i_h * i_w + top_left_y * i_w + top_left_x;
DType top_left_v = 0;
DType top_right_v = 0;
DType bottom_left_v = 0;
DType bottom_right_v = 0;
index_t lower_bound = 0;
if (between(top_left_x, lower_bound, i_w - 1) &&
between(top_left_y, lower_bound, i_h - 1))
top_left_v = *(data + data_index);
if (between(top_left_x + 1, lower_bound, i_w - 1) &&
between(top_left_y, lower_bound, i_h - 1))
top_right_v = *(data + data_index + 1);
if (between(top_left_x, lower_bound, i_w - 1) &&
between(top_left_y + 1, lower_bound, i_h - 1))
bottom_left_v = *(data + data_index + i_w);
if (between(top_left_x + 1, lower_bound, i_w - 1) &&
between(top_left_y + 1, lower_bound, i_h - 1))
bottom_right_v = *(data + data_index + i_w + 1);
*(out + out_index) = top_left_v * top_left_y_w * top_left_x_w +
top_right_v * top_left_y_w * (1.0 - top_left_x_w) +
bottom_left_v * (1.0 - top_left_y_w) * top_left_x_w +
bottom_right_v * (1.0 - top_left_y_w) * (1.0 - top_left_x_w);
}
}
}
}
}
template <typename DType>
inline void BilinearSamplingBackward(const Tensor<cpu, 4, DType>& input_grad,
const Tensor<cpu, 3, DType>& grid_src_data,
const Tensor<cpu, 4, DType>& output_grad,
const Tensor<cpu, 4, DType>& input_data) {
DType* g_input = input_grad.dptr_;
DType* grid_src = grid_src_data.dptr_;
const DType* grad = output_grad.dptr_;
const DType* data = input_data.dptr_;
const index_t o_n = output_grad.size(0), o_c = output_grad.size(1), o_h = output_grad.size(2),
o_w = output_grad.size(3);
const index_t i_c = input_data.size(1), i_h = input_data.size(2), i_w = input_data.size(3);
for (index_t n = 0; n < static_cast<index_t>(o_n); ++n) {
for (index_t h = 0; h < static_cast<index_t>(o_h); ++h) {
for (index_t w = 0; w < static_cast<index_t>(o_w); ++w) {
DType top_left_y_gw = 0.0;
DType top_left_x_gw = 0.0;
const index_t grid_src_index = n * o_h * o_w * 2 + h * o_w + w;
const DType y_real = (*(grid_src + grid_src_index + o_h * o_w) + 1) * (i_h - 1) / 2;
const DType x_real = (*(grid_src + grid_src_index) + 1) * (i_w - 1) / 2;
const auto top_left_y = static_cast<index_t>(std::floor(y_real));
const auto top_left_x = static_cast<index_t>(std::floor(x_real));
const DType top_left_y_w = 1.0 - (y_real - top_left_y);
const DType top_left_x_w = 1.0 - (x_real - top_left_x);
for (index_t c = 0; c < static_cast<index_t>(o_c); ++c) {
index_t grad_index = n * o_c * o_h * o_w + c * o_h * o_w + h * o_w + w;
const index_t data_index =
n * i_c * i_h * i_w + c * i_h * i_w + top_left_y * i_w + top_left_x;
// calc 4 vertex value in input data
DType top_left_v = 0;
DType top_right_v = 0;
DType bottom_left_v = 0;
DType bottom_right_v = 0;
index_t lower_bound = 0;
if (between(top_left_x, lower_bound, i_w - 1) &&
between(top_left_y, lower_bound, i_h - 1)) {
*(g_input + data_index) += *(grad + grad_index) * top_left_y_w * top_left_x_w;
top_left_v = *(data + data_index);
}
if (between(top_left_x + 1, lower_bound, i_w - 1) &&
between(top_left_y, lower_bound, i_h - 1)) {
*(g_input + data_index + 1) +=
*(grad + grad_index) * top_left_y_w * (1.0 - top_left_x_w);
top_right_v = *(data + data_index + 1);
}
if (between(top_left_x, lower_bound, i_w - 1) &&
between(top_left_y + 1, lower_bound, i_h - 1)) {
*(g_input + data_index + i_w) +=
*(grad + grad_index) * (1.0 - top_left_y_w) * top_left_x_w;
bottom_left_v = *(data + data_index + i_w);
}
if (between(top_left_x + 1, lower_bound, i_w - 1) &&
between(top_left_y + 1, lower_bound, i_h - 1)) {
*(g_input + data_index + i_w + 1) +=
*(grad + grad_index) * (1.0 - top_left_y_w) * (1.0 - top_left_x_w);
bottom_right_v = *(data + data_index + i_w + 1);
}
// calc weight grad of top_left_w, then multiple -1 is the grad of grid_src
top_left_y_gw -=
*(grad + grad_index) *
(top_right_v - bottom_right_v +
(top_left_v - top_right_v - bottom_left_v + bottom_right_v) * top_left_x_w);
top_left_x_gw -=
*(grad + grad_index) *
(bottom_left_v - bottom_right_v +
(top_left_v - top_right_v - bottom_left_v + bottom_right_v) * top_left_y_w);
}
// calc grid_src grad
*(grid_src + grid_src_index + o_h * o_w) = top_left_y_gw * (i_h - 1) / 2;
*(grid_src + grid_src_index) = top_left_x_gw * (i_w - 1) / 2;
}
}
}
}
} // namespace mshadow
namespace mxnet {
namespace op {
template <>
Operator* CreateOp<cpu>(SpatialTransformerParam param, int dtype) {
Operator* op = nullptr;
MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { op = new SpatialTransformerOp<cpu, DType>(param); })
return op;
}
Operator* SpatialTransformerProp::CreateOperatorEx(Context ctx,
mxnet::ShapeVector* in_shape,
std::vector<int>* in_type) const {
DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0]);
}
DMLC_REGISTER_PARAMETER(SpatialTransformerParam);
MXNET_REGISTER_OP_PROPERTY(SpatialTransformer, SpatialTransformerProp)
.add_argument("data", "NDArray-or-Symbol", "Input data to the SpatialTransformerOp.")
.add_argument("loc",
"NDArray-or-Symbol",
"localisation net, the output dim should be 6 when transform_type "
"is affine. You shold initialize the weight and bias with identity tranform.")
.add_arguments(SpatialTransformerParam::__FIELDS__())
.describe("Applies a spatial transformer to input feature map.");
} // namespace op
} // namespace mxnet