blob: c37a65f31ecc184e3586fe9d45eb4a4981177eee [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file sequence_last-inl.h
* \brief
* \author Sebastian Bodenstien
*/
#ifndef MXNET_OPERATOR_SEQUENCE_LAST_INL_H_
#define MXNET_OPERATOR_SEQUENCE_LAST_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <algorithm>
#include <map>
#include <string>
#include <utility>
#include <vector>
#include "./mshadow_op.h"
#include "./operator_common.h"
#include "./operator_common.h"
#include "./sequence_op_common.h"
namespace mxnet {
namespace op {
namespace seq_last {
enum SequenceLastOpInputs { kData, kSequenceLength };
enum SequenceLastOpOutputs { kOut };
enum SequenceLastOpResource { kTempSpace };
} // namespace seq_last
struct SequenceLastParam : public dmlc::Parameter<SequenceLastParam> {
bool use_sequence_length;
int axis;
DMLC_DECLARE_PARAMETER(SequenceLastParam) {
DMLC_DECLARE_FIELD(use_sequence_length)
.set_default(false)
.describe(
"If set to true, this layer takes in an extra input parameter "
"`sequence_length` "
"to specify variable length sequence");
DMLC_DECLARE_FIELD(axis).set_default(0).describe(
"The sequence axis. Only values of 0 and 1 are currently supported.");
}
};
template <int req>
struct SequenceLastKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(index_t i,
DType* out,
const DType* in,
const IType* idx,
index_t offset1,
index_t offset2,
mshadow::Shape<2> oshape) {
const auto opos = mxnet_op::unravel(i, oshape);
const index_t seqpos = static_cast<index_t>(idx[opos[0]]) - 1;
const index_t ipos = seqpos * offset1 + opos[0] * offset2 + opos[1];
KERNEL_ASSIGN(out[i], req, in[ipos]);
}
};
struct SequenceLastGradKernel {
template <typename DType, typename IType>
MSHADOW_XINLINE static void Map(index_t i,
DType* in_grad,
const DType* out_grad,
const IType* idx,
index_t offset1,
index_t offset2,
mshadow::Shape<2> oshape) {
const auto opos = mxnet_op::unravel(i, oshape);
const index_t seqpos = static_cast<index_t>(idx[opos[0]]) - 1;
const index_t ipos = seqpos * offset1 + opos[0] * offset2 + opos[1];
in_grad[ipos] += out_grad[i];
}
};
template <typename xpu, typename DType, typename IType>
class SequenceLastOp : public Operator {
public:
explicit SequenceLastOp(SequenceLastParam p) {
this->param_ = p;
}
void sequence_last(const mshadow::Tensor<xpu, 3, DType>& data,
const mshadow::Tensor<xpu, 2, DType>& out,
const mshadow::Tensor<xpu, 1, IType>& indices,
const OpReqType req,
mshadow::Stream<xpu>* const s) {
using namespace mshadow;
using namespace mshadow::expr;
int axis = param_.axis;
index_t out_size = out.size(0) * out.size(1);
index_t max_seq_len = data.size(axis);
index_t offset1 = axis ? out.size(1) : out_size;
index_t offset2 = axis ? (max_seq_len * out.size(1)) : out.size(1);
MXNET_ASSIGN_REQ_SWITCH(req, req_type, {
mxnet_op::Kernel<SequenceLastKernel<req_type>, xpu>::Launch(
s, out_size, out.dptr_, data.dptr_, indices.dptr_, offset1, offset2, out.shape_);
});
}
void sequence_last_grad(const mshadow::Tensor<xpu, 3, DType>& in_grad,
const mshadow::Tensor<xpu, 2, DType>& out_grad,
const mshadow::Tensor<xpu, 1, IType>& indices,
mshadow::Stream<xpu>* const s) {
using namespace mshadow;
using namespace mshadow::expr;
auto axis = param_.axis;
index_t batch = out_grad.size(0);
index_t rest = out_grad.size(1);
index_t out_size = batch * rest;
index_t max_seq_len = in_grad.size(axis);
index_t offset1 = axis ? rest : out_size;
index_t offset2 = axis ? (max_seq_len * rest) : rest;
mxnet_op::Kernel<SequenceLastGradKernel, xpu>::Launch(s,
out_size,
in_grad.dptr_,
out_grad.dptr_,
indices.dptr_,
offset1,
offset2,
out_grad.shape_);
}
virtual void Forward(const OpContext& ctx,
const std::vector<TBlob>& in_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& out_data,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
CHECK_EQ(out_data.size(), 1U);
Stream<xpu>* s = ctx.get_stream<xpu>();
// only support axis of 0 or 1 for now
auto axis = param_.axis;
// Get any size input + output into required form
auto d0 = in_data[seq_last::kData].size(0);
auto d1 = in_data[seq_last::kData].size(1);
auto dsize = in_data[seq_last::kData].Size();
if (dsize == 0) {
return; // noop if any input dimension is zero-sized, out_data is of a right shape
}
auto batch = (axis != 0) ? d0 : d1;
auto max_seq_len = in_data[seq_last::kData].size(axis);
auto rest_size = dsize / (d0 * d1);
Tensor<xpu, 3, DType> data =
in_data[seq_last::kData].get_with_shape<xpu, 3, DType>(Shape3(d0, d1, rest_size), s);
Tensor<xpu, 2, DType> out =
out_data[seq_last::kOut].get_with_shape<xpu, 2, DType>(Shape2(batch, rest_size), s);
Tensor<xpu, 1, IType> indices =
param_.use_sequence_length ?
in_data[seq_last::kSequenceLength].get<xpu, 1, IType>(s) :
ctx.requested[seq_last::kTempSpace].get_space_typed<xpu, 1, IType>(Shape1(batch), s);
if (!param_.use_sequence_length)
indices = max_seq_len;
sequence_last(data, out, indices, req[seq_last::kOut], s);
}
virtual void Backward(const OpContext& ctx,
const std::vector<TBlob>& out_grad,
const std::vector<TBlob>& in_data,
const std::vector<TBlob>& out_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& in_grad,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(out_grad.size(), 1U);
CHECK_EQ(in_data.size(), param_.use_sequence_length ? 2U : 1U);
// break immediately if null grad
if (req[seq_last::kData] == kNullOp)
return;
Stream<xpu>* s = ctx.get_stream<xpu>();
// only support axis of 0 or 1 for now
auto axis = param_.axis;
// Get any size input + output into required form
auto d0 = in_data[seq_last::kData].size(0);
auto d1 = in_data[seq_last::kData].size(1);
auto dsize = in_data[seq_last::kData].Size();
auto batch = (axis != 0) ? d0 : d1;
auto rest_size = dsize / (d0 * d1);
Tensor<xpu, 3, DType> data_grad =
in_grad[seq_last::kData].get_with_shape<xpu, 3, DType>(Shape3(d0, d1, rest_size), s);
Tensor<xpu, 2, DType> output_grad =
out_grad[seq_last::kOut].get_with_shape<xpu, 2, DType>(Shape2(batch, rest_size), s);
Tensor<xpu, 1, IType> indices =
param_.use_sequence_length ?
in_data[seq_last::kSequenceLength].get<xpu, 1, IType>(s) :
ctx.requested[seq_last::kTempSpace].get_space_typed<xpu, 1, IType>(Shape1(batch), s);
if (req[seq_last::kData] == kWriteTo)
data_grad = 0.0f;
sequence_last_grad(data_grad, output_grad, indices, s);
}
private:
SequenceLastParam param_;
}; // class SequenceLastOp
template <typename xpu>
Operator* CreateOp(SequenceLastParam param, int dtype, int itype);
#if DMLC_USE_CXX11
class SequenceLastProp : public OperatorProperty {
public:
int NumOutputs() const override {
return 1;
}
std::vector<std::string> ListArguments() const override {
if (param_.use_sequence_length)
return {"data", "sequence_length"};
else
return {"data"};
}
std::vector<std::string> ListOutputs() const override {
return {"output"};
}
void Init(const std::vector<std::pair<std::string, std::string>>& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(mxnet::ShapeVector* in_shape,
mxnet::ShapeVector* out_shape,
mxnet::ShapeVector* aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), param_.use_sequence_length ? 2U : 1U)
<< "Input:[data, sequence_length]";
CHECK((param_.axis == 0) || (param_.axis == 1))
<< "Current implementation expects axis to be 0 or 1.";
const mxnet::TShape& dshape = (*in_shape)[seq_last::kData];
CHECK_GT(dshape.ndim(), 1U) << "The data array must be of rank 2 or greater.";
// seq length vector is same as batch size
int sbatch = param_.axis ? dshape[0] : dshape[1];
if (param_.use_sequence_length)
SHAPE_ASSIGN_CHECK(*in_shape, seq_last::kSequenceLength, Shape1(sbatch));
// calculate output size
mxnet::TShape shape_o(dshape.ndim() - 1, -1);
shape_o[0] = sbatch;
for (index_t i = 1; i < shape_o.ndim(); ++i)
shape_o[i] = dshape[i + 1];
const mxnet::TShape& oshape = shape_o;
out_shape->clear();
out_shape->push_back(oshape);
return true;
}
bool InferType(std::vector<int>* in_type,
std::vector<int>* out_type,
std::vector<int>* aux_type) const override {
CHECK_GE(in_type->size(), param_.use_sequence_length ? 2U : 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (size_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new SequenceLastProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "SequenceLast";
}
std::vector<ResourceRequest> ForwardResource(const mxnet::ShapeVector& in_shape) const override {
return {ResourceRequest::kTempSpace};
}
std::vector<ResourceRequest> BackwardResource(const mxnet::ShapeVector& in_shape) const override {
return {ResourceRequest::kTempSpace};
}
std::vector<int> DeclareBackwardDependency(const std::vector<int>& out_grad,
const std::vector<int>& in_data,
const std::vector<int>& out_data) const override {
if (param_.use_sequence_length)
return {out_grad[seq_last::kOut], in_data[seq_last::kSequenceLength]};
else
return {out_grad[seq_last::kOut]};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return nullptr;
}
Operator* CreateOperatorEx(Context ctx,
mxnet::ShapeVector* in_shape,
std::vector<int>* in_type) const override;
private:
SequenceLastParam param_;
}; // class SequenceLastProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_SEQUENCE_LAST_INL_H_