blob: d56ec06e141a4f0d98e5bb26c4c3a0c11d97f03f [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file requantize-inl.h
* \brief implementation of quantize operation
*/
#ifndef MXNET_OPERATOR_QUANTIZATION_REQUANTIZE_INL_H_
#define MXNET_OPERATOR_QUANTIZATION_REQUANTIZE_INL_H_
#include <mxnet/operator_util.h>
#include <vector>
#include <limits>
#include "../elemwise_op_common.h"
#include "../mshadow_op.h"
#include "../mxnet_op.h"
#include "./quantization_utils.h"
#include "../tensor/broadcast_reduce_op.h"
namespace mxnet {
namespace op {
struct RequantizeParam : public dmlc::Parameter<RequantizeParam> {
int out_type;
dmlc::optional<float> min_calib_range; // min float value calculated from calibration dataset
dmlc::optional<float> max_calib_range; // max float value calculated from calibration dataset
DMLC_DECLARE_PARAMETER(RequantizeParam) {
DMLC_DECLARE_FIELD(out_type)
.add_enum("auto", QuantizeOutType::kAuto)
.add_enum("int8", QuantizeOutType::kInt8)
.add_enum("uint8", QuantizeOutType::kUint8)
.set_default(QuantizeOutType::kInt8)
.describe(
"Output data type. `auto` can be specified to automatically determine output type "
"according to min_calib_range.");
DMLC_DECLARE_FIELD(min_calib_range)
.set_default(dmlc::optional<float>())
.describe(
"The minimum scalar value in the form of float32 obtained "
"through calibration. If present, it will be used to requantize the "
"int32 data into int8.");
DMLC_DECLARE_FIELD(max_calib_range)
.set_default(dmlc::optional<float>())
.describe(
"The maximum scalar value in the form of float32 obtained "
"through calibration. If present, it will be used to requantize the "
"int32 data into int8.");
}
};
inline bool RequantizeType(const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 3U);
CHECK_EQ(out_attrs->size(), 3U);
const RequantizeParam& param = nnvm::get<RequantizeParam>(attrs.parsed);
TYPE_ASSIGN_CHECK(*in_attrs, 0, mshadow::kInt32);
TYPE_ASSIGN_CHECK(*in_attrs, 1, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*in_attrs, 2, mshadow::kFloat32);
auto out_type = GetQuantizeOutputType(param);
if (out_type == mshadow::kUint8) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kUint8);
} else if (out_type == mshadow::kInt8) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kInt8);
} else {
LOG(FATAL) << "requantize op only supports int8 and uint8 as output type";
}
TYPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*out_attrs, 2, mshadow::kFloat32);
return (*in_attrs)[0] != -1;
}
struct RequantizeKernel {
template <typename T1, typename T2>
MSHADOW_XINLINE static void Map(int i,
T2* output,
float* omin_range,
float* omax_range,
const T1* input,
const float* imin_range,
const float* imax_range,
const float real_range) {
const float input_float = QuantizedToFloat<T1>(input[i], *imin_range, *imax_range);
*omin_range = -real_range;
*omax_range = real_range;
output[i] = FloatToQuantized<T2>(input_float, -real_range, real_range);
}
template <typename T1, typename T2>
MSHADOW_XINLINE static void Map(int i,
T2* output,
float* omin_range,
float* omax_range,
const T1* input,
const float* imin_range,
const float* imax_range,
const float* actual_min,
const float* actual_max) {
Map(i,
output,
omin_range,
omax_range,
input,
imin_range,
imax_range,
MaxAbs(*actual_min, *actual_max));
}
};
template <typename xpu>
void RequantizeForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
using namespace mxnet_op;
typedef int32_t SrcDType;
typedef int8_t DstDType;
Stream<xpu>* s = ctx.get_stream<xpu>();
const RequantizeParam& param = nnvm::get<RequantizeParam>(attrs.parsed);
auto out_type = GetQuantizeOutputType(param);
if (out_type == mshadow::kUint8 && std::is_same<xpu, gpu>::value) {
LOG(FATAL) << "currently, uint8 quantization is only supported by CPU, "
"please switch to the context of CPU or int8 data type for GPU.";
}
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
Kernel<RequantizeKernel, xpu>::Launch(
s,
inputs[0].Size(),
outputs[0].dptr<DstDType>(),
outputs[1].dptr<float>(),
outputs[2].dptr<float>(),
inputs[0].dptr<SrcDType>(),
inputs[1].dptr<float>(),
inputs[2].dptr<float>(),
MaxAbs(param.min_calib_range.value(), param.max_calib_range.value()));
} else { // model is not calibrated
mxnet::TShape src_shape, dst_shape;
const size_t actual_float_size = sizeof(float);
const size_t actual_quantized_size = sizeof(SrcDType);
const size_t temp_reduce_size = ConfigReduce<xpu, SrcDType>(
s, inputs[0].shape_, mxnet::TShape(1, 1), &src_shape, &dst_shape);
Tensor<xpu, 1, char> temp_space = ctx.requested[0].get_space_typed<xpu, 1, char>(
Shape1(2 * actual_float_size + 2 * actual_quantized_size + temp_reduce_size), s);
Tensor<xpu, 1, float> actual_min_float(
reinterpret_cast<float*>(temp_space.dptr_), Shape1(1), s);
Tensor<xpu, 1, float> actual_max_float(
reinterpret_cast<float*>(temp_space.dptr_) + 1, Shape1(1), s);
const int dev_id = ctx.run_ctx.ctx.dev_id;
TBlob actual_min_quantized(
reinterpret_cast<SrcDType*>(temp_space.dptr_ + 8), Shape1(1), xpu::kDevMask, dev_id);
TBlob actual_max_quantized(
reinterpret_cast<SrcDType*>(temp_space.dptr_ + 8) + 1, Shape1(1), xpu::kDevMask, dev_id);
Tensor<xpu, 1, char> workspace(
temp_space.dptr_ + 2 * actual_float_size + 2 * actual_quantized_size,
Shape1(temp_reduce_size),
s);
#if !defined(__CUDACC__)
broadcast::Reduce<red::minimum, 2, SrcDType, mshadow::op::identity>(
s,
actual_min_quantized.reshape(dst_shape),
kWriteTo,
workspace,
inputs[0].reshape(src_shape));
Kernel<QuantizedToFloatStruct, xpu>::Launch(s,
1,
actual_min_float.dptr_,
actual_min_quantized.dptr<SrcDType>(),
inputs[1].dptr<float>(),
inputs[2].dptr<float>());
broadcast::Reduce<red::maximum, 2, SrcDType, mshadow::op::identity>(
s,
actual_max_quantized.reshape(dst_shape),
kWriteTo,
workspace,
inputs[0].reshape(src_shape));
#else
broadcast::RTCReduce(ctx,
actual_min_quantized.reshape(dst_shape),
kWriteTo,
workspace,
inputs[0].reshape(src_shape),
"red::minimum{}",
2,
"identity");
Kernel<QuantizedToFloatStruct, xpu>::Launch(s,
1,
actual_min_float.dptr_,
actual_min_quantized.dptr<SrcDType>(),
inputs[1].dptr<float>(),
inputs[2].dptr<float>());
broadcast::RTCReduce(ctx,
actual_max_quantized.reshape(dst_shape),
kWriteTo,
workspace,
inputs[0].reshape(src_shape),
"red::maximum{}",
2,
"identity");
#endif
Kernel<QuantizedToFloatStruct, xpu>::Launch(s,
1,
actual_max_float.dptr_,
actual_max_quantized.dptr<SrcDType>(),
inputs[1].dptr<float>(),
inputs[2].dptr<float>());
Kernel<RequantizeKernel, xpu>::Launch(s,
inputs[0].Size(),
outputs[0].dptr<DstDType>(),
outputs[1].dptr<float>(),
outputs[2].dptr<float>(),
inputs[0].dptr<SrcDType>(),
inputs[1].dptr<float>(),
inputs[2].dptr<float>(),
actual_min_float.dptr_,
actual_max_float.dptr_);
}
}
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_QUANTIZATION_REQUANTIZE_INL_H_