blob: 7f297d6e57d5f0fdbd7b848bdec38817e8492fa4 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file quantize_v2-inl.h
* \brief implementation of quantize operation
*/
#ifndef MXNET_OPERATOR_QUANTIZATION_QUANTIZE_V2_INL_H_
#define MXNET_OPERATOR_QUANTIZATION_QUANTIZE_V2_INL_H_
#include <mxnet/operator_util.h>
#include <vector>
#include <limits>
#include "../elemwise_op_common.h"
#include "../mshadow_op.h"
#include "../mxnet_op.h"
#include "./quantization_utils.h"
#include "../tensor/broadcast_reduce_op.h"
namespace mxnet {
namespace op {
struct QuantizeV2Param : public dmlc::Parameter<QuantizeV2Param> {
int out_type;
dmlc::optional<float> min_calib_range;
dmlc::optional<float> max_calib_range;
DMLC_DECLARE_PARAMETER(QuantizeV2Param) {
DMLC_DECLARE_FIELD(out_type)
.add_enum("auto", QuantizeOutType::kAuto)
.add_enum("int8", QuantizeOutType::kInt8)
.add_enum("uint8", QuantizeOutType::kUint8)
.set_default(QuantizeOutType::kInt8)
.describe(
"Output data type. `auto` can be specified to automatically determine output type "
"according to min_calib_range.");
DMLC_DECLARE_FIELD(min_calib_range)
.set_default(dmlc::optional<float>())
.describe(
"The minimum scalar value in the form of float32. If present, it will be used to "
"quantize the fp32 data into int8 or uint8.");
DMLC_DECLARE_FIELD(max_calib_range)
.set_default(dmlc::optional<float>())
.describe(
"The maximum scalar value in the form of float32. If present, it will be used to "
"quantize the fp32 data into int8 or uint8.");
}
};
// quantize float to uint8_t
struct quantize_v2_unsigned {
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i,
DstDType* out,
float* omin_range,
float* omax_range,
const SrcDType* in,
const float imin_range,
const float imax_range,
const double min_limit,
const double max_limit) {
const float scale = (max_limit - min_limit) / (imax_range - imin_range);
out[i] = static_cast<DstDType>((in[i] - imin_range) * scale + 0.5);
*omin_range = imin_range;
*omax_range = imax_range;
}
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i,
DstDType* out,
float* omin_range,
float* omax_range,
const SrcDType* in,
const float* imin_range,
const float* imax_range,
const double min_limit,
const double max_limit) {
Map(i, out, omin_range, omax_range, in, *imin_range, *imax_range, min_limit, max_limit);
}
};
// keep zero-center
struct quantize_v2_zero_centered {
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i,
DstDType* out,
float* omin_range,
float* omax_range,
const SrcDType* in,
const float imin_range,
const float imax_range,
const float quantized_range) {
float real_range = MaxAbs(imin_range, imax_range);
float scale = quantized_range / real_range;
SrcDType x = in[i];
out[i] = static_cast<DstDType>(Sign(x) * Min(Abs(x) * scale + 0.5f, quantized_range));
*omin_range = -real_range;
*omax_range = real_range;
}
template <typename DstDType, typename SrcDType>
MSHADOW_XINLINE static void Map(int i,
DstDType* out,
float* omin_range,
float* omax_range,
const SrcDType* in,
const float* imin_range,
const float* imax_range,
const float quantized_range) {
Map(i, out, omin_range, omax_range, in, *imin_range, *imax_range, quantized_range);
}
};
static inline bool QuantizeV2Shape(const nnvm::NodeAttrs& attrs,
std::vector<TShape>* in_attrs,
std::vector<TShape>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 3U);
mxnet::TShape dshape = (*in_attrs)[0];
SHAPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0));
SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape(1, 1));
SHAPE_ASSIGN_CHECK(*out_attrs, 2, TShape(1, 1));
if ((*out_attrs)[0].ndim() > 0) {
dshape[0] = ((*out_attrs)[0])[0];
SHAPE_ASSIGN_CHECK(*in_attrs, 0, dshape);
}
return !shape_is_none(out_attrs->at(0));
}
static inline bool QuantizeV2Type(const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 3U);
const QuantizeV2Param& param = nnvm::get<QuantizeV2Param>(attrs.parsed);
#if MXNET_USE_ONEDNN == 1
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
CHECK(in_attrs->at(0) == mshadow::kFloat32 || in_attrs->at(0) == mshadow::kBfloat16 ||
in_attrs->at(0) == mshadow::kUint8 || in_attrs->at(0) == mshadow::kInt8);
} else {
CHECK(in_attrs->at(0) == mshadow::kFloat32 || in_attrs->at(0) == mshadow::kUint8 ||
in_attrs->at(0) == mshadow::kInt8);
}
#else
CHECK(in_attrs->at(0) == mshadow::kFloat32 || in_attrs->at(0) == mshadow::kUint8 ||
in_attrs->at(0) == mshadow::kInt8);
#endif
auto out_type = GetQuantizeOutputType(param);
if (out_type == mshadow::kUint8) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kUint8);
} else if (out_type == mshadow::kInt8) {
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kInt8);
} else {
LOG(FATAL) << "quantize op only supports int8 and uint8 as output type";
}
TYPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::kFloat32);
TYPE_ASSIGN_CHECK(*out_attrs, 2, mshadow::kFloat32);
return (*in_attrs)[0] != -1;
}
template <typename xpu>
class QuantizeV2Operator {
public:
explicit QuantizeV2Operator(const nnvm::NodeAttrs& attrs) : attrs_(attrs) {}
void Forward(const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
using namespace mxnet_op;
typedef float SrcDType;
using mshadow::red::limits::MaxValue;
using mshadow::red::limits::MinValue;
Stream<xpu>* s = ctx.get_stream<xpu>();
const QuantizeV2Param& param = nnvm::get<QuantizeV2Param>(attrs_.parsed);
auto out_type = GetQuantizeOutputType(param);
if (out_type == mshadow::kUint8 && std::is_same<xpu, gpu>::value) {
LOG(FATAL) << "currently, uint8 quantization is only supported by CPU, "
"please switch to the context of CPU or int8 data type for GPU.";
}
if (inputs[0].type_flag_ == mshadow::kUint8 || inputs[0].type_flag_ == mshadow::kInt8) {
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
*outputs[1].dptr<float>() = param.min_calib_range.value();
*outputs[2].dptr<float>() = param.max_calib_range.value();
} else {
if (inputs[0].type_flag_ == mshadow::kUint8) {
*outputs[1].dptr<float>() = 0;
*outputs[2].dptr<float>() = 255;
} else {
*outputs[1].dptr<float>() = -127;
*outputs[2].dptr<float>() = 127;
}
}
UnaryOp::IdentityCompute<xpu>(attrs_, ctx, {inputs[0]}, req, outputs);
} else {
if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) {
if (out_type == mshadow::kUint8) {
Kernel<quantize_v2_unsigned, xpu>::Launch(s,
outputs[0].Size(),
outputs[0].dptr<uint8_t>(),
outputs[1].dptr<float>(),
outputs[2].dptr<float>(),
inputs[0].dptr<SrcDType>(),
param.min_calib_range.value(),
param.max_calib_range.value(),
MinValue<uint8_t>(),
MaxValue<uint8_t>());
} else if (out_type == mshadow::kInt8) { // zero-centered quantization
Kernel<quantize_v2_zero_centered, xpu>::Launch(
s,
outputs[0].Size(),
outputs[0].dptr<int8_t>(),
outputs[1].dptr<float>(),
outputs[2].dptr<float>(),
inputs[0].dptr<SrcDType>(),
param.min_calib_range.value(),
param.max_calib_range.value(),
MinAbs(MaxValue<int8_t>(), MinValue<int8_t>()));
} else {
LOG(FATAL) << "quantize op only supports int8 and uint8 as output type";
}
} else { // model is not calibrated
mxnet::TShape src_shape, dst_shape;
const size_t actual_float_size = sizeof(float);
const size_t temp_reduce_size = ConfigReduce<xpu, SrcDType>(
s, inputs[0].shape_, mxnet::TShape(1, 1), &src_shape, &dst_shape);
Tensor<xpu, 1, char> temp_space = ctx.requested[0].get_space_typed<xpu, 1, char>(
Shape1(2 * actual_float_size + temp_reduce_size), s);
const int dev_id = ctx.run_ctx.ctx.dev_id;
TBlob in_min_t(
reinterpret_cast<SrcDType*>(temp_space.dptr_), Shape1(1), xpu::kDevMask, dev_id);
TBlob in_max_t(
reinterpret_cast<SrcDType*>(temp_space.dptr_) + 1, Shape1(1), xpu::kDevMask, dev_id);
Tensor<xpu, 1, char> workspace(
temp_space.dptr_ + 2 * actual_float_size, Shape1(temp_reduce_size), s);
#if !defined(__CUDACC__)
broadcast::Reduce<red::minimum, 2, SrcDType, mshadow::op::identity>(
s, in_min_t.reshape(dst_shape), kWriteTo, workspace, inputs[0].reshape(src_shape));
broadcast::Reduce<red::maximum, 2, SrcDType, mshadow::op::identity>(
s, in_max_t.reshape(dst_shape), kWriteTo, workspace, inputs[0].reshape(src_shape));
#else
broadcast::RTCReduce(ctx,
in_min_t.reshape(dst_shape),
kWriteTo,
workspace,
inputs[0].reshape(src_shape),
"red::minimum{}",
2,
"identity");
broadcast::RTCReduce(ctx,
in_max_t.reshape(dst_shape),
kWriteTo,
workspace,
inputs[0].reshape(src_shape),
"red::maximum{}",
2,
"identity");
#endif
if (out_type == mshadow::kUint8) {
Kernel<quantize_v2_unsigned, xpu>::Launch(s,
outputs[0].Size(),
outputs[0].dptr<uint8_t>(),
outputs[1].dptr<float>(),
outputs[2].dptr<float>(),
inputs[0].dptr<SrcDType>(),
in_min_t.dptr<float>(),
in_max_t.dptr<float>(),
MinValue<uint8_t>(),
MaxValue<uint8_t>());
} else if (out_type == mshadow::kInt8) { // zero-centered quantization
Kernel<quantize_v2_zero_centered, xpu>::Launch(
s,
outputs[0].Size(),
outputs[0].dptr<int8_t>(),
outputs[1].dptr<float>(),
outputs[2].dptr<float>(),
inputs[0].dptr<SrcDType>(),
in_min_t.dptr<float>(),
in_max_t.dptr<float>(),
MinAbs(MaxValue<int8_t>(), MinValue<int8_t>()));
} else {
LOG(FATAL) << "quantize op only supports int8 and uint8 as output type";
}
}
}
}
private:
nnvm::NodeAttrs attrs_;
};
template <typename xpu>
static void QuantizeV2Forward(const OpStatePtr& state_ptr,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
auto& op = state_ptr.get_state<QuantizeV2Operator<xpu>>();
op.Forward(ctx, inputs, req, outputs);
}
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_QUANTIZATION_QUANTIZE_V2_INL_H_