| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file quantize_asym.cc |
| * \brief implementation of asymmetric quantize operation |
| */ |
| |
| #include <string> |
| |
| #include "operator/quantization/quantize_asym-inl.h" |
| #if MXNET_USE_ONEDNN == 1 |
| #include "operator/quantization/dnnl/dnnl_quantize_asym-inl.h" |
| #endif |
| |
| namespace mxnet { |
| namespace op { |
| |
| DMLC_REGISTER_PARAMETER(QuantizeAsymParam); |
| |
| inline bool QuantizeAsymShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector* in_attrs, |
| mxnet::ShapeVector* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 1U); |
| CHECK_EQ(out_attrs->size(), 3U); |
| |
| mxnet::TShape dshape = in_attrs->at(0); |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, dshape); |
| SHAPE_ASSIGN_CHECK(*out_attrs, 1, TShape(1, 1)); |
| SHAPE_ASSIGN_CHECK(*out_attrs, 2, TShape(1, 1)); |
| |
| if (out_attrs->at(0).ndim() > 0) { |
| dshape[0] = out_attrs->at(0)[0]; |
| SHAPE_ASSIGN_CHECK(*in_attrs, 0, dshape); |
| } |
| |
| return !shape_is_none(out_attrs->at(0)); |
| } |
| |
| inline bool QuantizeAsymType(const nnvm::NodeAttrs& attrs, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 1U); |
| CHECK_EQ(out_attrs->size(), 3U); |
| |
| CHECK_EQ(in_attrs->at(0), mshadow::kFloat32); |
| |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kUint8); |
| TYPE_ASSIGN_CHECK(*out_attrs, 1, mshadow::kFloat32); |
| TYPE_ASSIGN_CHECK(*out_attrs, 2, mshadow::kFloat32); |
| |
| return !type_is_none(out_attrs->at(0)); |
| } |
| |
| bool QuantizeAsymStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| *dispatch_mode = DispatchMode::kFCompute; |
| #if MXNET_USE_ONEDNN == 1 |
| if (dev_mask == mshadow::cpu::kDevMask) { |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| } |
| #endif |
| out_attrs->at(0) = kDefaultStorage; |
| out_attrs->at(1) = kDefaultStorage; |
| out_attrs->at(2) = kDefaultStorage; |
| return true; |
| } |
| |
| OpStatePtr CreateQuantizeAsymState(const nnvm::NodeAttrs& attrs, |
| const Context& ctx, |
| const std::vector<TShape>& in_shapes, |
| const std::vector<int>& in_types) { |
| OpStatePtr state; |
| if (ctx.dev_type == kGPU) { |
| state = OpStatePtr::Create<QuantizeAsymOp<gpu>>(attrs); |
| } else { |
| #if MXNET_USE_ONEDNN == 1 |
| if (in_shapes[0].ndim() == 3 && in_types[0] == mshadow::kFloat32) { |
| state = OpStatePtr::Create<DNNLQuantizeAsymOp>(attrs); |
| return state; |
| } |
| #else |
| state = OpStatePtr::Create<QuantizeAsymOp<cpu>>(attrs); |
| #endif |
| } |
| return state; |
| } |
| |
| NNVM_REGISTER_OP(_contrib_quantize_asym) |
| .describe(R"code(Quantize a input tensor from float to uint8_t. |
| Output `scale` and `shift` are scalar floats that specify the quantization |
| parameters for the input data. The output is calculated using the following equation: |
| |
| `out[i] = in[i] * scale + shift + 0.5`, |
| |
| where `scale = uint8_range / (max_range - min_range)` and |
| `shift = numeric_limits<T>::max - max_range * scale`. |
| |
| .. Note:: |
| This operator only supports forward propagation. DO NOT use it in training.)code" ADD_FILELINE) |
| .set_attr_parser(ParamParser<QuantizeAsymParam>) |
| .set_num_inputs(1) |
| .set_num_outputs(3) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data"}; |
| }) |
| .set_attr<nnvm::FListOutputNames>("FListOutputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"output", "scale", "shift"}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", QuantizeAsymShape) |
| .set_attr<nnvm::FInferType>("FInferType", QuantizeAsymType) |
| .set_attr<FInferStorageType>("FInferStorageType", QuantizeAsymStorageType) |
| .set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes) |
| .set_attr<FCreateOpState>("FCreateOpState", CreateQuantizeAsymState) |
| #if MXNET_USE_ONEDNN == 1 |
| .set_attr<bool>("TIsDNNL", true) |
| .set_attr<FStatefulComputeEx>("FStatefulComputeEx<cpu>", DNNLQuantizeAsymForward) |
| #endif |
| .set_attr<FStatefulCompute>("FStatefulCompute<cpu>", QuantizeAsymForward<cpu>) |
| .set_attr<FNeedCalibrateInput>("FNeedCalibrateInput", |
| [](const NodeAttrs& attrs) { return std::vector<int>{0}; }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| const QuantizeAsymParam& param = |
| nnvm::get<QuantizeAsymParam>(attrs.parsed); |
| if (param.max_calib_range.has_value() && |
| param.max_calib_range.has_value()) { |
| return std::vector<ResourceRequest>(); |
| } else { |
| return std::vector<ResourceRequest>( |
| 1, ResourceRequest::kTempSpace); |
| } |
| }) |
| .add_argument("data", "NDArray-or-Symbol", "A ndarray/symbol of type `float32`") |
| .add_arguments(QuantizeAsymParam::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |