| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file quantize_asym-inl.h |
| * \brief implementation of asymmetric quantize operation |
| */ |
| #ifndef MXNET_OPERATOR_QUANTIZATION_QUANTIZE_ASYM_INL_H_ |
| #define MXNET_OPERATOR_QUANTIZATION_QUANTIZE_ASYM_INL_H_ |
| |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mshadow/tensor.h> |
| #include <mxnet/operator_util.h> |
| #include <vector> |
| |
| #include "../mshadow_op.h" |
| #include "../mxnet_op.h" |
| #include "../tensor/broadcast_reduce_op.h" |
| #include "./quantization_utils.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| struct QuantizeAsymParam : public dmlc::Parameter<QuantizeAsymParam> { |
| dmlc::optional<float> min_calib_range; |
| dmlc::optional<float> max_calib_range; |
| |
| DMLC_DECLARE_PARAMETER(QuantizeAsymParam) { |
| DMLC_DECLARE_FIELD(min_calib_range) |
| .set_default(dmlc::optional<float>()) |
| .describe( |
| "The minimum scalar value in the form of float32. If " |
| "present, it will be used to " |
| "quantize the fp32 data."); |
| DMLC_DECLARE_FIELD(max_calib_range) |
| .set_default(dmlc::optional<float>()) |
| .describe( |
| "The maximum scalar value in the form of float32. If " |
| "present, it will be used to " |
| "quantize the fp32 data."); |
| } |
| }; |
| |
| // quantize float to uint8_t |
| struct quantize_asymmetric { |
| template <typename DstDType, typename SrcDType> |
| MSHADOW_XINLINE static void Map(int i, |
| DstDType* out, |
| float* oscale, |
| float* oshift, |
| const SrcDType* in, |
| const float scale, |
| const float shift) { |
| out[i] = static_cast<DstDType>(in[i] * scale + shift + 0.5); |
| *oscale = scale; |
| *oshift = shift; |
| } |
| }; |
| |
| template <typename xpu> |
| class QuantizeAsymOp { |
| public: |
| explicit QuantizeAsymOp(const nnvm::NodeAttrs& attrs) : attrs_(attrs) {} |
| |
| void Forward(const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| using namespace mshadow; |
| using namespace mxnet_op; |
| using mshadow::red::limits::MaxValue; |
| using mshadow::red::limits::MinValue; |
| |
| CHECK_EQ(outputs[0].type_flag_, mshadow::kUint8) |
| << "Asymmetric quantization only supports uint8 outputs."; |
| mshadow::Stream<xpu>* s = ctx.get_stream<xpu>(); |
| const int input_data_dtype = inputs[0].type_flag_; |
| if (input_data_dtype == mshadow::kUint8) { |
| *outputs[1].dptr<float>() = 1; |
| *outputs[2].dptr<float>() = 0; |
| UnaryOp::IdentityCompute<xpu>(attrs_, ctx, {inputs[0]}, req, outputs); |
| } else if (input_data_dtype == mshadow::kInt8) { |
| const float scale = 1; |
| const float shift = 128; |
| Kernel<quantize_asymmetric, xpu>::Launch(s, |
| outputs[0].Size(), |
| outputs[0].dptr<uint8_t>(), |
| outputs[1].dptr<float>(), |
| outputs[2].dptr<float>(), |
| inputs[0].dptr<int8_t>(), |
| scale, |
| shift); |
| } else if (input_data_dtype == mshadow::kFloat32) { |
| const QuantizeAsymParam& param = nnvm::get<QuantizeAsymParam>(attrs_.parsed); |
| if (param.min_calib_range.has_value() && param.max_calib_range.has_value()) { |
| const float scale = |
| MaxValue<uint8_t>() / (param.max_calib_range.value() - param.min_calib_range.value()); |
| const float shift = MaxValue<uint8_t>() - param.max_calib_range.value() * scale; |
| Kernel<quantize_asymmetric, xpu>::Launch(s, |
| outputs[0].Size(), |
| outputs[0].dptr<uint8_t>(), |
| outputs[1].dptr<float>(), |
| outputs[2].dptr<float>(), |
| inputs[0].dptr<float>(), |
| scale, |
| shift); |
| } else { |
| mxnet::TShape src_shape, dst_shape; |
| const size_t float_bytes = sizeof(float); |
| const size_t temp_reduce_size = ConfigReduce<xpu, float>( |
| s, inputs[0].shape_, mxnet::TShape(1, 1), &src_shape, &dst_shape); |
| Tensor<xpu, 1, char> temp_space = ctx.requested[0].get_space_typed<xpu, 1, char>( |
| Shape1(2 * float_bytes + temp_reduce_size), s); |
| const int dev_id = ctx.run_ctx.ctx.dev_id; |
| TBlob in_min_t( |
| reinterpret_cast<float*>(temp_space.dptr_), Shape1(1), xpu::kDevMask, dev_id); |
| TBlob in_max_t( |
| reinterpret_cast<float*>(temp_space.dptr_) + 1, Shape1(1), xpu::kDevMask, dev_id); |
| Tensor<xpu, 1, char> workspace( |
| temp_space.dptr_ + 2 * float_bytes, Shape1(temp_reduce_size), s); |
| broadcast::Reduce<red::minimum, 2, float, mshadow::op::identity>( |
| s, in_min_t.reshape(dst_shape), kWriteTo, workspace, inputs[0].reshape(src_shape)); |
| broadcast::Reduce<red::maximum, 2, float, mshadow::op::identity>( |
| s, in_max_t.reshape(dst_shape), kWriteTo, workspace, inputs[0].reshape(src_shape)); |
| const float scale = |
| MaxValue<uint8_t>() / (*in_max_t.dptr<float>() - *in_min_t.dptr<float>()); |
| const float shift = MaxValue<uint8_t>() - *in_max_t.dptr<float>() * scale; |
| Kernel<quantize_asymmetric, xpu>::Launch(s, |
| outputs[0].Size(), |
| outputs[0].dptr<uint8_t>(), |
| outputs[1].dptr<float>(), |
| outputs[2].dptr<float>(), |
| inputs[0].dptr<float>(), |
| scale, |
| shift); |
| } |
| } else { |
| LOG(FATAL) << "Asymmetric quantizaiton only supports int8, uint8 and " |
| "float inputs"; |
| } |
| } |
| |
| private: |
| nnvm::NodeAttrs attrs_; |
| }; |
| |
| template <typename xpu> |
| void QuantizeAsymForward(const OpStatePtr& state_ptr, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| QuantizeAsymOp<xpu>& op = state_ptr.get_state<QuantizeAsymOp<xpu>>(); |
| op.Forward(ctx, inputs, req, outputs); |
| } |
| |
| } // namespace op |
| } // namespace mxnet |
| |
| #endif // MXNET_OPERATOR_QUANTIZATION_QUANTIZE_ASYM_INL_H_ |