| |
| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file dnnl_quantized_transpose.cc |
| * \author: Rafal Litka, rafal.litka@intel.com |
| */ |
| #if MXNET_USE_ONEDNN == 1 |
| #include "operator/numpy/np_matrix_op-inl.h" |
| #include "operator/tensor/matrix_op-inl.h" |
| #include "operator/nn/dnnl/dnnl_transpose-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| inline static bool QuantizedTransposeStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 3U); |
| CHECK_EQ(out_attrs->size(), 3U); |
| return DNNLStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs, out_attrs); |
| } |
| |
| // Support for https://oneapi-src.github.io/oneDNN/v2.6/dev_guide_reorder.html |
| bool SupportDNNLQuantizedTranspose(const NDArray& data) { |
| return SupportDNNL<DNNLTypeMode::ByteTypes>(data); |
| } |
| typedef void (*TransposeFallbackFunAny)(const nnvm::NodeAttrs&, |
| const OpContext&, |
| const std::vector<TBlob>&, |
| const std::vector<OpReqType>&, |
| const std::vector<TBlob>&); |
| |
| template <class ParamType, TransposeFallbackFunAny TransposeFallback> |
| static void DNNLQuantizedTransposeForward(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| CHECK(inputs[0].dtype() == mshadow::kUint8 || inputs[0].dtype() == mshadow::kInt8) |
| << "dnnl_quantized_transpose only supports uint8 and int8 as input type"; |
| if (req[0] == kNullOp) { |
| return; |
| } |
| CHECK_EQ(inputs.size(), 3U); |
| CHECK_EQ(outputs.size(), 3U); |
| if (SupportDNNLQuantizedTranspose(inputs[0])) { |
| DNNLRun(DNNLTransposeForward<ParamType>, attrs, ctx, inputs[0], req[0], outputs[0]); |
| } else { |
| FallBackCompute(TransposeFallback, attrs, ctx, inputs, req, outputs); |
| } |
| outputs[1].data().dptr<float>()[0] = inputs[1].data().dptr<float>()[0]; |
| outputs[2].data().dptr<float>()[0] = inputs[2].data().dptr<float>()[0]; |
| } |
| |
| NNVM_REGISTER_OP(_npx_quantized_transpose) |
| .set_attr<FInferStorageType>("FInferStorageType", QuantizedTransposeStorageType) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& n) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", |
| DNNLQuantizedTransposeForward<NumpyTransposeParam, NumpyTranspose<cpu>>) |
| .set_attr<bool>("TIsDNNL", true); |
| |
| NNVM_REGISTER_OP(_contrib_quantized_transpose) |
| .set_attr<FInferStorageType>("FInferStorageType", QuantizedTransposeStorageType) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& n) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", |
| DNNLQuantizedTransposeForward<TransposeParam, Transpose<cpu>>) |
| .set_attr<bool>("TIsDNNL", true); |
| |
| } // namespace op |
| } // namespace mxnet |
| |
| #endif // MXNET_USE_ONEDNN == 1 |