blob: 6be64c3254b530c506ddb41265516dfbc097cff0 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file dnnl_quantized_transpose.cc
* \author: Rafal Litka, rafal.litka@intel.com
*/
#if MXNET_USE_ONEDNN == 1
#include "operator/numpy/np_matrix_op-inl.h"
#include "operator/tensor/matrix_op-inl.h"
#include "operator/nn/dnnl/dnnl_transpose-inl.h"
namespace mxnet {
namespace op {
inline static bool QuantizedTransposeStorageType(const nnvm::NodeAttrs& attrs,
const int dev_mask,
DispatchMode* dispatch_mode,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 3U);
CHECK_EQ(out_attrs->size(), 3U);
return DNNLStorageType(attrs, dev_mask, true, dispatch_mode, in_attrs, out_attrs);
}
// Support for https://oneapi-src.github.io/oneDNN/v2.6/dev_guide_reorder.html
bool SupportDNNLQuantizedTranspose(const NDArray& data) {
return SupportDNNL<DNNLTypeMode::ByteTypes>(data);
}
typedef void (*TransposeFallbackFunAny)(const nnvm::NodeAttrs&,
const OpContext&,
const std::vector<TBlob>&,
const std::vector<OpReqType>&,
const std::vector<TBlob>&);
template <class ParamType, TransposeFallbackFunAny TransposeFallback>
static void DNNLQuantizedTransposeForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& inputs,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& outputs) {
CHECK(inputs[0].dtype() == mshadow::kUint8 || inputs[0].dtype() == mshadow::kInt8)
<< "dnnl_quantized_transpose only supports uint8 and int8 as input type";
if (req[0] == kNullOp) {
return;
}
CHECK_EQ(inputs.size(), 3U);
CHECK_EQ(outputs.size(), 3U);
if (SupportDNNLQuantizedTranspose(inputs[0])) {
DNNLRun(DNNLTransposeForward<ParamType>, attrs, ctx, inputs[0], req[0], outputs[0]);
} else {
FallBackCompute(TransposeFallback, attrs, ctx, inputs, req, outputs);
}
outputs[1].data().dptr<float>()[0] = inputs[1].data().dptr<float>()[0];
outputs[2].data().dptr<float>()[0] = inputs[2].data().dptr<float>()[0];
}
NNVM_REGISTER_OP(_npx_quantized_transpose)
.set_attr<FInferStorageType>("FInferStorageType", QuantizedTransposeStorageType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FComputeEx>("FComputeEx<cpu>",
DNNLQuantizedTransposeForward<NumpyTransposeParam, NumpyTranspose<cpu>>)
.set_attr<bool>("TIsDNNL", true);
NNVM_REGISTER_OP(_contrib_quantized_transpose)
.set_attr<FInferStorageType>("FInferStorageType", QuantizedTransposeStorageType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FComputeEx>("FComputeEx<cpu>",
DNNLQuantizedTransposeForward<TransposeParam, Transpose<cpu>>)
.set_attr<bool>("TIsDNNL", true);
} // namespace op
} // namespace mxnet
#endif // MXNET_USE_ONEDNN == 1