blob: 8066c0f5ba489f32c869d50af9cbc251ea9a0702 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file dnnl_quantized_pooling.cc
* \brief
* \author Tao Lv, Xinyu Chen
*/
#if MXNET_USE_ONEDNN == 1
#include "operator/nn/dnnl/dnnl_pooling-inl.h"
namespace mxnet {
namespace op {
static void DNNLQuantizedPoolingForward(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<NDArray>& in_data,
const std::vector<OpReqType>& req,
const std::vector<NDArray>& out_data) {
CHECK(in_data[0].dtype() == mshadow::kUint8 || in_data[0].dtype() == mshadow::kInt8)
<< "dnnl_quantized_pooling op only supports uint8 and int8 as input type";
DNNLRun(DNNLPoolingCompute, attrs, ctx, in_data, req, out_data);
out_data[1].data().dptr<float>()[0] = in_data[1].data().dptr<float>()[0];
out_data[2].data().dptr<float>()[0] = in_data[2].data().dptr<float>()[0];
}
NNVM_REGISTER_OP(_contrib_quantized_pooling)
.set_attr<bool>("TIsDNNL", true)
.set_attr<FComputeEx>("FComputeEx<cpu>", DNNLQuantizedPoolingForward);
} // namespace op
} // namespace mxnet
#endif // MXNET_USE_ONEDNN == 1