blob: b11e2c078cc338635ae39f99b5c989f00313038a [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_multinomial_op.h
* \brief Operator for numpy sampling from multinomial distributions
*/
#include "./np_multinomial_op.h"
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(NumpyMultinomialParam);
NNVM_REGISTER_OP(_npi_multinomial)
.describe(R"code(Draw samples from a multinomial distribution. "
"The multinomial distribution is a multivariate generalisation of the binomial distribution. "
"Take an experiment with one of p possible outcomes. "
"An example of such an experiment is throwing a dice, where the outcome can be 1 through 6. "
"Each sample drawn from the distribution represents n such experiments. "
"Its values, X_i = [X_0, X_1, ..., X_p], represent the number of times the outcome was i.
)code")
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
const NumpyMultinomialParam& param = nnvm::get<NumpyMultinomialParam>(attrs.parsed);
return param.pvals.has_value() ? 0U : 1U;
})
.set_num_outputs(1)
.set_attr_parser(ParamParser<NumpyMultinomialParam>)
.set_attr<mxnet::FInferShape>("FInferShape", NumpyMultinomialOpShape)
.set_attr<nnvm::FInferType>("FInferType", NumpyMultinomialOpType)
.set_attr<FResourceRequest>("FResourceRequest",
[](const nnvm::NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kRandom,
ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>", NumpyMultinomialForward<cpu>)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.add_argument("a", "NDArray-or-Symbol", "Source input")
.add_arguments(NumpyMultinomialParam::__FIELDS__());
} // namespace op
} // namespace mxnet