| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file np_true_divide.cc |
| * \brief CPU Implementation of true_divide operator. |
| */ |
| |
| #include "./np_true_divide-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| int TrueDivideOutType(int ltype, int rtype) { |
| if (common::is_float(ltype) && common::is_float(rtype)) { |
| // If both inputs are float, return the one with the higher precision |
| return common::type_promotion(ltype, rtype); |
| } else if (common::is_float(ltype) || common::is_float(rtype)) { |
| // If only one of the inputs is float, return that float type |
| return (common::is_float(ltype)) ? ltype : rtype; |
| } |
| // If neither of the inputs is float, return the default dtype |
| return mxnet::common::GetDefaultDtype(); |
| } |
| |
| template <int num_inputs> |
| bool TrueDivideType(const nnvm::NodeAttrs& attrs, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), static_cast<size_t>(num_inputs)); |
| CHECK_GT(in_attrs->size(), 0U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| |
| for (const int dtype : *in_attrs) { |
| if (dtype == -1) |
| return false; |
| } |
| |
| const int lhs_dtype = in_attrs->at(0); |
| const int rhs_dtype = |
| (num_inputs == 2) ? |
| in_attrs->at(1) : |
| (common::is_float(lhs_dtype) ? lhs_dtype : mxnet::common::GetDefaultDtype()); |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, TrueDivideOutType(lhs_dtype, rhs_dtype)); |
| return true; |
| } |
| |
| #if MXNET_USE_ONEDNN == 1 |
| void NumpyDivideBroadcastComputeCPU(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| TrueDivideBroadcastCompute<cpu>(attrs, ctx, inputs, req, outputs); |
| } |
| #endif // MXNET_USE_ONEDNN |
| |
| NNVM_REGISTER_OP(_npi_true_divide) |
| .set_num_inputs(2) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"lhs", "rhs"}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", BinaryBroadcastShape) |
| .set_attr<nnvm::FInferType>("FInferType", TrueDivideType<2>) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}, {1, 0}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", TrueDivideBroadcastCompute<cpu>) |
| #if MXNET_USE_ONEDNN == 1 |
| .set_attr<FComputeEx>("FComputeEx<cpu>", NumpyBinaryOperatorComputeExCPU<op::mshadow_op::div>) |
| .set_attr<FInferStorageType>("FInferStorageType", NumpyBinaryBroadcastStorageType) |
| #endif // MXNET_USE_ONEDNN |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_npi_broadcast_div"}) |
| .add_argument("lhs", "NDArray-or-Symbol", "Dividend array") |
| .add_argument("rhs", "NDArray-or-Symbol", "Divisor array"); |
| |
| NNVM_REGISTER_OP(_backward_npi_broadcast_div) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 1}}; |
| }) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", |
| NumpyBinaryBackwardUseIn<cpu, mshadow_op::div_grad, mshadow_op::div_rgrad>); |
| |
| NNVM_REGISTER_OP(_npi_true_divide_scalar) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<NumpyBinaryScalarParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>) |
| .set_attr<nnvm::FInferType>("FInferType", TrueDivideType<1>) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}}; |
| }) |
| .set_attr<FCompute>("FCompute<cpu>", TrueDivideScalarCompute<cpu, op::mshadow_op::true_divide>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseNone{"_backward_div_scalar"}) |
| .add_argument("data", "NDArray-or-Symbol", "source input") |
| .add_arguments(NumpyBinaryScalarParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_npi_rtrue_divide_scalar) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr_parser(ParamParser<NumpyBinaryScalarParam>) |
| .set_attr<mxnet::FInferShape>("FInferShape", ElemwiseShape<1, 1>) |
| .set_attr<nnvm::FInferType>("FInferType", TrueDivideType<1>) |
| .set_attr<nnvm::FInplaceOption>("FInplaceOption", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::pair<int, int> >{{0, 0}}; |
| }) |
| #ifdef _WIN32 |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>{ResourceRequest::kTempSpace}; |
| }) |
| #endif |
| .set_attr<FCompute>("FCompute<cpu>", TrueDivideScalarCompute<cpu, mshadow_op::rtrue_divide>) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_rdiv_scalar"}) |
| .add_argument("data", "NDArray-or-Symbol", "source input") |
| .add_arguments(NumpyBinaryScalarParam::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |