| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file np_init_op.h |
| * \brief Function definition of numpy init op |
| */ |
| |
| #ifndef MXNET_OPERATOR_NUMPY_NP_INIT_OP_H_ |
| #define MXNET_OPERATOR_NUMPY_NP_INIT_OP_H_ |
| |
| #include <algorithm> |
| #include <vector> |
| #include <string> |
| #include "../../api/operator/op_utils.h" |
| #include "../tensor/init_op.h" |
| #include "../tensor/elemwise_unary_op.h" |
| #include "../../api/operator/op_utils.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| struct NumpyEyeParam : public dmlc::Parameter<NumpyEyeParam> { |
| nnvm::dim_t N; |
| dmlc::optional<nnvm::dim_t> M; |
| nnvm::dim_t k; |
| std::string ctx; |
| int dtype; |
| DMLC_DECLARE_PARAMETER(NumpyEyeParam) { |
| DMLC_DECLARE_FIELD(N).describe("Number of rows in the output."); |
| DMLC_DECLARE_FIELD(M) |
| .set_default(dmlc::optional<nnvm::dim_t>()) |
| .describe("Number of columns in the output. If None, defaults to N."); |
| DMLC_DECLARE_FIELD(k).set_default(0).describe( |
| "Index of the diagonal. 0 (the default) refers to the main diagonal," |
| "a positive value refers to an upper diagonal." |
| "and a negative value to a lower diagonal."); |
| DMLC_DECLARE_FIELD(ctx).set_default("").describe( |
| "Context of output, in format [cpu|gpu|cpu_pinned](n)." |
| "Only used for imperative calls."); |
| DMLC_DECLARE_FIELD(dtype).set_default(-1).add_enum("None", -1) |
| MXNET_ADD_ALL_TYPES_EXT_WITH_BOOL.describe("Data-type of the returned array."); |
| } |
| void SetAttrDict(std::unordered_map<std::string, std::string>* dict) { |
| std::ostringstream N_s, M_s, k_s, dtype_s; |
| N_s << N; |
| M_s << M; |
| k_s << k; |
| dtype_s << dtype; |
| (*dict)["N"] = N_s.str(); |
| (*dict)["M"] = M_s.str(); |
| (*dict)["k"] = k_s.str(); |
| (*dict)["dtype"] = MXNetTypeWithBool2String(dtype); |
| } |
| }; |
| |
| struct IndicesOpParam : public dmlc::Parameter<IndicesOpParam> { |
| mxnet::TShape dimensions; |
| int dtype; |
| std::string ctx; |
| DMLC_DECLARE_PARAMETER(IndicesOpParam) { |
| DMLC_DECLARE_FIELD(dimensions).describe("The shape of the grid."); |
| DMLC_DECLARE_FIELD(dtype).set_default(-1).add_enum("None", -1) |
| MXNET_ADD_ALL_TYPES.describe("Target data type."); |
| DMLC_DECLARE_FIELD(ctx).set_default("").describe( |
| "Context of output, in format [cpu|gpu|cpu_pinned](n)." |
| "Only used for imperative calls."); |
| } |
| void SetAttrDict(std::unordered_map<std::string, std::string>* dict) { |
| std::ostringstream dimensions_s, dtype_s; |
| dimensions_s << dimensions; |
| dtype_s << dtype; |
| (*dict)["dimensions"] = dimensions_s.str(); |
| (*dict)["dtype"] = MXNetTypeWithBool2String(dtype); |
| } |
| }; |
| |
| /*! \brief Initialize and fill output with an arbitrary value */ |
| struct NumpyInitOpWithScalarParam : public dmlc::Parameter<NumpyInitOpWithScalarParam> { |
| mxnet::TShape shape; |
| std::string ctx; |
| int dtype; |
| double double_value; |
| int64_t int_value; |
| uint64_t uint_value; |
| int value_type; |
| DMLC_DECLARE_PARAMETER(NumpyInitOpWithScalarParam) { |
| DMLC_DECLARE_FIELD(shape).set_default(mxnet::TShape()).describe("The shape of the output"); |
| DMLC_DECLARE_FIELD(ctx).set_default("").describe( |
| "Context of output, in format [cpu|gpu|cpu_pinned](n)." |
| "Only used for imperative calls."); |
| DMLC_DECLARE_FIELD(dtype).set_default(-1).add_enum("None", -1) |
| MXNET_ADD_ALL_TYPES_EXT_WITH_BOOL.describe("Target data type."); |
| DMLC_DECLARE_FIELD(double_value) |
| .describe("Float value with which to fill newly created tensor"); |
| DMLC_DECLARE_FIELD(int_value).describe("Integer value with which to fill newly created tensor"); |
| DMLC_DECLARE_FIELD(uint_value) |
| .describe("Unsigned integer value with which to fill newly created tensor"); |
| DMLC_DECLARE_FIELD(value_type).describe("Choose the value type"); |
| } |
| |
| void SetAttrDict(std::unordered_map<std::string, std::string>* dict) { |
| std::ostringstream shape_s, dtype_s, double_value_s, int_value_s, value_type_s, uint_value_s; |
| shape_s << shape; |
| dtype_s << dtype; |
| double_value_s << double_value; |
| int_value_s << int_value; |
| uint_value_s << uint_value; |
| value_type_s << value_type; |
| (*dict)["shape"] = shape_s.str(); |
| (*dict)["dtype"] = MXNetTypeWithBool2String(dtype); |
| (*dict)["int_value"] = int_value_s.str(); |
| (*dict)["uint_value"] = uint_value_s.str(); |
| (*dict)["double_value"] = double_value_s.str(); |
| (*dict)["value_type"] = value_type_s.str(); |
| // We do not set ctx, because ctx has been set in dict instead of InitOpParam. |
| // Setting ctx here results in an error. |
| } |
| }; |
| |
| /*! \brief Fill output with an arbitrary value */ |
| template <typename xpu> |
| void NumpyInitFillWithScalarCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| CHECK_EQ(inputs.size(), 0); |
| CHECK_EQ(outputs.size(), 1U); |
| const auto& param = nnvm::get<NumpyInitOpWithScalarParam>(attrs.parsed); |
| if (param.value_type == 0) { |
| Fill<false>(ctx.get_stream<xpu>(), outputs[0], req[0], param.int_value); |
| } else if (param.value_type == 1) { |
| Fill<false>(ctx.get_stream<xpu>(), outputs[0], req[0], param.uint_value); |
| } else { |
| Fill<false>(ctx.get_stream<xpu>(), outputs[0], req[0], param.double_value); |
| } |
| } |
| |
| struct NumpyLinspaceParam : public dmlc::Parameter<NumpyLinspaceParam> { |
| double start_double = 0.0; |
| double stop_double = 0.0; |
| int64_t start_int = 0; |
| int64_t stop_int = 0; |
| uint64_t start_uint = 0; |
| uint64_t stop_uint = 0; |
| index_t num; |
| bool endpoint; |
| std::string ctx; |
| int dtype; |
| int value_type; |
| DMLC_DECLARE_PARAMETER(NumpyLinspaceParam) { |
| DMLC_DECLARE_FIELD(start_double).describe("The double type starting value of the sequence."); |
| DMLC_DECLARE_FIELD(stop_double).describe("The double type ending value of the sequence"); |
| DMLC_DECLARE_FIELD(start_int).describe("The int type starting value of the sequence."); |
| DMLC_DECLARE_FIELD(stop_int).describe("The int type ending value of the sequence"); |
| DMLC_DECLARE_FIELD(start_uint) |
| .describe("The unsigned int type starting value of the sequence."); |
| DMLC_DECLARE_FIELD(stop_uint).describe("The unsigned int type ending value of the sequence"); |
| DMLC_DECLARE_FIELD(num).describe("Number of samples to generate. Must be non-negative."); |
| DMLC_DECLARE_FIELD(endpoint).set_default(true).describe( |
| "If True, stop is the last sample. Otherwise, it is not included."); |
| DMLC_DECLARE_FIELD(ctx).set_default("").describe( |
| "Context of output, in format [cpu|gpu|cpu_pinned](n)." |
| "Only used for imperative calls."); |
| DMLC_DECLARE_FIELD(dtype).set_default(-1).add_enum("None", -1) |
| MXNET_ADD_ALL_TYPES_EXT_WITH_BOOL.describe("Target data type."); |
| DMLC_DECLARE_FIELD(value_type).set_default(0).describe("Data type for start and stop value"); |
| } |
| void SetAttrDict(std::unordered_map<std::string, std::string>* dict) { |
| std::ostringstream start_double_s, stop_double_s, num_s, endpoint_s, dtype_s, start_int_s, |
| stop_int_s, start_uint_s, stop_uint_s, value_type_s; |
| start_double_s << start_double; |
| stop_double_s << stop_double; |
| start_int_s << start_int; |
| stop_int_s << stop_int; |
| start_uint_s << start_uint; |
| stop_uint_s << stop_uint; |
| value_type_s << value_type; |
| num_s << num; |
| endpoint_s << endpoint; |
| dtype_s << dtype; |
| (*dict)["start_double"] = start_double_s.str(); |
| (*dict)["stop_double"] = stop_double_s.str(); |
| (*dict)["start_int"] = start_int_s.str(); |
| (*dict)["stop_int"] = stop_int_s.str(); |
| (*dict)["start_uint"] = start_uint_s.str(); |
| (*dict)["stop_uint"] = stop_uint_s.str(); |
| (*dict)["value_type"] = value_type_s.str(); |
| (*dict)["num"] = num_s.str(); |
| (*dict)["endpoint"] = endpoint_s.str(); |
| (*dict)["dtype"] = MXNetTypeWithBool2String(dtype); |
| } |
| }; |
| |
| inline bool NumpyLinspaceShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector* in_attrs, |
| mxnet::ShapeVector* out_attrs) { |
| const NumpyLinspaceParam& param = nnvm::get<NumpyLinspaceParam>(attrs.parsed); |
| CHECK_EQ(in_attrs->size(), 0U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| CHECK_GE(param.num, 0) << "Number of sequence should be non-negative, received " << param.num; |
| mxnet::TShape shape = mxnet::TShape({static_cast<nnvm::dim_t>(param.num)}); |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, shape); |
| return true; |
| } |
| |
| struct numpy_linspace_fwd { |
| template <typename DType, typename ValueType> |
| MSHADOW_XINLINE static void Map(index_t i, |
| index_t size, |
| ValueType start, |
| ValueType stop, |
| bool endpoint, |
| double step, |
| int req, |
| DType* out) { |
| if (i == 0) { |
| // Special cases : start = 9007199254740993 |
| KERNEL_ASSIGN(out[i], req, static_cast<DType>(start)); |
| } else { |
| KERNEL_ASSIGN(out[i], req, static_cast<DType>(start + step * i)); |
| } |
| if (endpoint && i != 0 && i == size - 1) { |
| KERNEL_ASSIGN(out[i], req, static_cast<DType>(stop)); |
| } |
| } |
| }; |
| |
| template <typename xpu> |
| void NumpyLinspaceCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| using namespace mxnet_op; |
| Stream<xpu>* s = ctx.get_stream<xpu>(); |
| const NumpyLinspaceParam& param = nnvm::get<NumpyLinspaceParam>(attrs.parsed); |
| MSHADOW_TYPE_SWITCH_EXT_WITH_BOOL(outputs[0].type_flag_, DType, { |
| index_t step_num = param.endpoint ? param.num - 1 : param.num; |
| if (param.value_type == 0) { |
| int64_t start = param.start_int; |
| int64_t stop = param.stop_int; |
| double step = |
| step_num > 0 ? (static_cast<double>(stop) - static_cast<double>(start)) / step_num : 0.0f; |
| Kernel<numpy_linspace_fwd, xpu>::Launch(s, |
| outputs[0].Size(), |
| outputs[0].Size(), |
| start, |
| stop, |
| param.endpoint, |
| step, |
| req[0], |
| outputs[0].dptr<DType>()); |
| } else if (param.value_type == 1) { |
| uint64_t start = param.start_uint; |
| uint64_t stop = param.stop_uint; |
| double step = |
| step_num > 0 ? (static_cast<double>(stop) - static_cast<double>(start)) / step_num : 0.0f; |
| Kernel<numpy_linspace_fwd, xpu>::Launch(s, |
| outputs[0].Size(), |
| outputs[0].Size(), |
| start, |
| stop, |
| param.endpoint, |
| step, |
| req[0], |
| outputs[0].dptr<DType>()); |
| } else { |
| double start = param.start_double; |
| double stop = param.stop_double; |
| double step = step_num > 0 ? (stop - start) / step_num : 0.0f; |
| Kernel<numpy_linspace_fwd, xpu>::Launch(s, |
| outputs[0].Size(), |
| outputs[0].Size(), |
| start, |
| stop, |
| param.endpoint, |
| step, |
| req[0], |
| outputs[0].dptr<DType>()); |
| } |
| }); |
| } |
| |
| inline bool NumpyRangeShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector* in_shapes, |
| mxnet::ShapeVector* out_shapes) { |
| const RangeParam& param = nnvm::get<RangeParam>(attrs.parsed); |
| CHECK_EQ(in_shapes->size(), 0U); |
| CHECK_EQ(out_shapes->size(), 1U); |
| CHECK_NE(param.step, 0) << "_npi_arange does not support step=0"; |
| CHECK_EQ(param.repeat, 1) << "_npi_arange only supports repeat=1, received " << param.repeat; |
| CHECK(param.stop.has_value()) << "_npi_arange requires stop to have a value"; |
| double out_size = std::ceil((param.stop.value() - param.start) / param.step); |
| if (out_size < 0) { |
| out_size = 0; |
| } |
| SHAPE_ASSIGN_CHECK(*out_shapes, 0, mxnet::TShape({static_cast<nnvm::dim_t>(out_size)})); |
| return true; |
| } |
| |
| inline bool NumpyEyeShape(const nnvm::NodeAttrs& attrs, |
| mxnet::ShapeVector* in_attrs, |
| mxnet::ShapeVector* out_attrs) { |
| const NumpyEyeParam& param = nnvm::get<NumpyEyeParam>(attrs.parsed); |
| CHECK_EQ(in_attrs->size(), 0U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| nnvm::dim_t M = param.M.has_value() ? param.M.value() : param.N; |
| CHECK(param.N >= 0) << "negative dimensions are not allowed. N is " << param.N; |
| CHECK(M >= 0) << "negative dimensions are not allowed. M is " << M; |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::Shape2(param.N, M)); |
| |
| return out_attrs->at(0).ndim() != 0U; |
| } |
| template <typename xpu> |
| void NumpyEyeFill(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| CHECK_EQ(inputs.size(), 0U); |
| CHECK_EQ(outputs.size(), 1U); |
| if (outputs[0].shape_.Size() == 0) |
| return; // zero-size tensor |
| const NumpyEyeParam& param = nnvm::get<NumpyEyeParam>(attrs.parsed); |
| const nnvm::dim_t num_cols = param.M.has_value() ? param.M.value() : param.N; |
| EyeFillImpl<xpu>(outputs[0], ctx, req, num_cols, param.N, param.k); |
| } |
| |
| template <int req> |
| struct indices_fwd { |
| template <typename DType> |
| MSHADOW_XINLINE static void Map(index_t i, |
| DType* out, |
| const nnvm::dim_t value, |
| const nnvm::dim_t N, |
| const nnvm::dim_t dim_i, |
| const nnvm::dim_t j, |
| const nnvm::dim_t k, |
| const nnvm::dim_t t) { |
| KERNEL_ASSIGN(out[dim_i * N + N / (t * value) * j + i + k * N / t], req, static_cast<DType>(j)); |
| } |
| }; |
| |
| template <int req> |
| struct identity { |
| template <typename DType> |
| MSHADOW_XINLINE static void Map(index_t i, DType* out_data, const int n) { |
| using namespace mxnet_op; |
| |
| const index_t row_id = i / n; |
| const index_t col_id = i % n; |
| if (row_id == col_id) { |
| KERNEL_ASSIGN(out_data[i], req, static_cast<DType>(1)); |
| } else { |
| KERNEL_ASSIGN(out_data[i], req, static_cast<DType>(0)); |
| } |
| } |
| }; |
| |
| template <typename xpu> |
| void IndicesCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| using namespace mxnet_op; |
| CHECK_EQ(inputs.size(), 0U); |
| CHECK_EQ(outputs.size(), 1U); |
| CHECK_EQ(req.size(), 1U); |
| const IndicesOpParam& param = nnvm::get<IndicesOpParam>(attrs.parsed); |
| const TBlob& out_data = outputs[0]; |
| mshadow::Stream<xpu>* s = ctx.get_stream<xpu>(); |
| dim_t indim = param.dimensions.ndim(); |
| dim_t t = 1; |
| dim_t N = out_data.Size() / indim; |
| dim_t value = 0; |
| if (out_data.Size() == 0) |
| return; |
| if (req[0] != kNullOp) { |
| MSHADOW_TYPE_SWITCH(out_data.type_flag_, DType, { |
| MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { |
| for (int i = 0; i < indim; ++i) { |
| value = param.dimensions[i]; |
| for (int k = 0; k < t; ++k) { |
| for (int j = 0; j < param.dimensions[i]; ++j) { |
| Kernel<indices_fwd<req_type>, xpu>::Launch( |
| s, N / (param.dimensions[i] * t), out_data.dptr<DType>(), value, N, i, j, k, t); |
| } |
| } |
| t = t * param.dimensions[i]; |
| } |
| }); |
| }); |
| } |
| } |
| |
| template <typename xpu> |
| void IdentityCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| using namespace mxnet_op; |
| using namespace mshadow; |
| CHECK_EQ(inputs.size(), 0U); |
| CHECK_EQ(outputs.size(), 1U); |
| CHECK_EQ(req.size(), 1U); |
| Stream<xpu>* s = ctx.get_stream<xpu>(); |
| const TBlob& out_data = outputs[0]; |
| int n = out_data.shape_[0]; |
| MSHADOW_TYPE_SWITCH_WITH_BOOL(out_data.type_flag_, DType, { |
| MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, { |
| Kernel<identity<req_type>, xpu>::Launch(s, out_data.Size(), out_data.dptr<DType>(), n); |
| }); |
| }); |
| } |
| |
| struct LogspaceParam : public dmlc::Parameter<LogspaceParam> { |
| double start; |
| double stop; |
| index_t num; |
| bool endpoint; |
| double base; |
| std::string ctx; |
| int dtype; |
| DMLC_DECLARE_PARAMETER(LogspaceParam) { |
| DMLC_DECLARE_FIELD(start).describe("The starting value of the sequence."); |
| DMLC_DECLARE_FIELD(stop).describe("The ending value of the sequence"); |
| DMLC_DECLARE_FIELD(num).describe("Number of samples to generate. Must be non-negative."); |
| DMLC_DECLARE_FIELD(endpoint).set_default(true).describe( |
| "If True, stop is the last sample. Otherwise, it is not included."); |
| DMLC_DECLARE_FIELD(base).set_default(10.0).describe( |
| "The base of the log space. The step size between the elements in " |
| "ln(samples) / ln(base) (or log_base(samples)) is uniform."); |
| DMLC_DECLARE_FIELD(ctx).set_default("").describe( |
| "Context of output, in format [cpu|gpu|cpu_pinned](n)." |
| "Only used for imperative calls."); |
| DMLC_DECLARE_FIELD(dtype).set_default(-1).add_enum("None", -1) |
| MXNET_ADD_ALL_TYPES.describe("Target data type."); |
| } |
| void SetAttrDict(std::unordered_map<std::string, std::string>* dict) { |
| std::ostringstream start_s, stop_s, num_s, endpoint_s, base_s, dtype_s; |
| start_s << start; |
| stop_s << stop; |
| num_s << num; |
| endpoint_s << endpoint; |
| base_s << base; |
| (*dict)["start"] = start_s.str(); |
| (*dict)["stop"] = stop_s.str(); |
| (*dict)["num"] = num_s.str(); |
| (*dict)["endpoint"] = endpoint_s.str(); |
| (*dict)["base"] = base_s.str(); |
| (*dict)["dtype"] = MXNetTypeWithBool2String(dtype); |
| } |
| }; |
| |
| struct logspace_fwd { |
| template <typename DType> |
| MSHADOW_XINLINE static void |
| Map(index_t i, double start, double stop, double base, double step, int req, DType* out) { |
| KERNEL_ASSIGN( |
| out[i], req, static_cast<DType>(math::pow(base, static_cast<double>(start + step * i)))); |
| } |
| }; |
| |
| template <typename xpu> |
| void LogspaceCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| using namespace mxnet_op; |
| Stream<xpu>* s = ctx.get_stream<xpu>(); |
| const LogspaceParam& param = nnvm::get<LogspaceParam>(attrs.parsed); |
| if (param.num == 0) |
| return; |
| MSHADOW_TYPE_SWITCH(outputs[0].type_flag_, DType, { |
| index_t step_num = param.endpoint ? param.num - 1 : param.num; |
| double step = step_num > 0 ? (param.stop - param.start) / step_num : 0.0f; |
| Kernel<logspace_fwd, xpu>::Launch(s, |
| outputs[0].Size(), |
| param.start, |
| param.stop, |
| param.base, |
| step, |
| req[0], |
| outputs[0].dptr<DType>()); |
| }); |
| } |
| |
| struct AtleastNDParam : dmlc::Parameter<AtleastNDParam> { |
| int num_args; |
| DMLC_DECLARE_PARAMETER(AtleastNDParam) { |
| DMLC_DECLARE_FIELD(num_args).set_lower_bound(1).describe("Number of input arrays."); |
| } |
| void SetAttrDict(std::unordered_map<std::string, std::string>* dict) { |
| std::ostringstream num_args_s; |
| num_args_s << num_args; |
| (*dict)["num_args"] = num_args_s.str(); |
| } |
| }; |
| |
| template <typename xpu> |
| void AtleastNDCompute(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<TBlob>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& outputs) { |
| auto& param = nnvm::get<AtleastNDParam>(attrs.parsed); |
| CHECK_EQ(inputs.size(), param.num_args); |
| CHECK_EQ(outputs.size(), param.num_args); |
| for (int i = 0; i < param.num_args; ++i) { |
| UnaryOp::IdentityCompute<xpu>(attrs, ctx, {inputs[i]}, {req[i]}, {outputs[i]}); |
| } |
| } |
| |
| } // namespace op |
| } // namespace mxnet |
| |
| #endif // MXNET_OPERATOR_NUMPY_NP_INIT_OP_H_ |