| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file np_tensorinv.cc |
| * \brief CPU implementation placeholder of Tensor Inverse Operator |
| */ |
| #include "./np_tensorinv-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| inline bool TensorinvOpShape(const nnvm::NodeAttrs& attrs, |
| std::vector<mxnet::TShape>* in_attrs, |
| std::vector<mxnet::TShape>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 1U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| |
| const mxnet::TShape& a_shape = (*in_attrs)[0]; |
| const int a_ndim = a_shape.ndim(); |
| mxnet::TShape inv_a_shape(a_shape); |
| if (!ndim_is_known(a_shape)) { |
| return false; |
| } |
| // ind > 0, defalut = 2 |
| int ind = 2; |
| ind = nnvm::get<TensorinvParam>(attrs.parsed).ind; |
| CHECK_GT(ind, 0) << "Invalid ind argument."; |
| |
| if (a_ndim > 0 && ind < a_ndim) { |
| for (int i = 0; i < ind; ++i) { |
| inv_a_shape[a_ndim - ind + i] = a_shape[i]; |
| } |
| for (int i = ind; i < a_ndim; ++i) { |
| inv_a_shape[i - ind] = a_shape[i]; |
| } |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, inv_a_shape); |
| } else { // ind >= a_ndim |
| SHAPE_ASSIGN_CHECK(*out_attrs, 0, inv_a_shape); |
| } |
| CHECK_NE(inv_a_shape.ndim(), 0) << "can not reshape array"; |
| |
| dim_t prod_front = 1, prod_back = 1; |
| if (ind < a_ndim) { |
| for (int i = 0; i < ind; ++i) { |
| prod_front *= a_shape[i]; |
| } |
| for (int i = ind; i < a_ndim; ++i) { |
| prod_back *= a_shape[i]; |
| } |
| CHECK_GT(prod_back, 0) << "can not reshape array of size 0 into shape"; |
| } else { |
| for (int i = 0; i < a_ndim; ++i) { |
| prod_front *= a_shape[i]; |
| } |
| } |
| // prod_back >= 1 and prod_front == prod_back |
| CHECK_EQ(prod_front, prod_back) |
| << "a shape must be square, i. e., prod(a.shape[:ind]) == prod(a.shape[ind:])."; |
| return !mxnet::op::shape_is_none(out_attrs->at(0)); |
| } |
| |
| inline bool TensorinvOpType(const nnvm::NodeAttrs& attrs, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 1U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| int a_type = in_attrs->at(0); |
| // unsupport float16 |
| CHECK_NE(a_type, mshadow::kFloat16) << "array type float16 is unsupported in linalg"; |
| if (mshadow::kFloat32 == a_type) { |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); |
| } else { |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kFloat64); |
| } |
| return out_attrs->at(0) != -1; |
| } |
| |
| DMLC_REGISTER_PARAMETER(TensorinvParam); |
| |
| NNVM_REGISTER_OP(_npi_tensorinv) |
| .describe(R"code()code" ADD_FILELINE) |
| .set_attr_parser(mxnet::op::ParamParser<TensorinvParam>) |
| .set_num_inputs(1) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"a"}; |
| }) |
| .set_attr<mxnet::FInferShape>("FInferShape", TensorinvOpShape) |
| .set_attr<nnvm::FInferType>("FInferType", TensorinvOpType) |
| .set_attr<FResourceRequest>("FResourceRequest", |
| [](const NodeAttrs& attrs) { |
| return std::vector<ResourceRequest>(1, |
| ResourceRequest::kTempSpace); |
| }) |
| .set_attr<THasDeterministicOutput>("THasDeterministicOutput", true) |
| .set_attr<FCompute>("FCompute<cpu>", TensorinvOpForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", |
| mxnet::op::ElemwiseGradUseOut{"_backward_npi_tensorinv"}) |
| .add_argument("a", "NDArray-or-Symbol", "First input") |
| .add_arguments(TensorinvParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_npi_tensorinv) |
| .set_attr_parser(mxnet::op::ParamParser<TensorinvParam>) |
| .set_num_inputs(2) |
| .set_num_outputs(1) |
| .set_attr<FResourceRequest>( |
| "FResourceRequest", |
| [](const NodeAttrs&) { |
| return std::vector<ResourceRequest>{1, ResourceRequest::kTempSpace}; |
| }) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FCompute>("FCompute<cpu>", TensorinvOpBackward<cpu>); |
| |
| } // namespace op |
| } // namespace mxnet |