blob: d840cb4d21a967d04675e16750e5004bcf3642b9 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file activation.cc
* \brief softmax_activation op
* \author Junyuan Xie, Da Zheng
*/
#include "./softmax_activation-inl.h"
#include "../tensor/elemwise_unary_op.h"
#include "../mshadow_op.h"
namespace mxnet {
namespace op {
DMLC_REGISTER_PARAMETER(SoftmaxActivationParam);
MXNET_OPERATOR_REGISTER_UNARY(SoftmaxActivation)
.describe(R"code(Applies softmax activation to input. This is intended for internal layers.
.. note::
This operator has been deprecated, please use `softmax`.
If `mode` = ``instance``, this operator will compute a softmax for each instance in the batch.
This is the default mode.
If `mode` = ``channel``, this operator will compute a k-class softmax at each position
of each instance, where `k` = ``num_channel``. This mode can only be used when the input array
has at least 3 dimensions.
This can be used for `fully convolutional network`, `image segmentation`, etc.
Example::
>>> input_array = mx.nd.array([[3., 0.5, -0.5, 2., 7.],
>>> [2., -.4, 7., 3., 0.2]])
>>> softmax_act = mx.nd.SoftmaxActivation(input_array)
>>> print softmax_act.asnumpy()
[[ 1.78322066e-02 1.46375655e-03 5.38485940e-04 6.56010211e-03 9.73605454e-01]
[ 6.56221947e-03 5.95310994e-04 9.73919690e-01 1.78379621e-02 1.08472735e-03]]
)code" ADD_FILELINE)
.set_attr_parser(ParamParser<SoftmaxActivationParam>)
.set_attr<nnvm::FListOutputNames>("FListOutputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"output"};
})
.set_attr<FCompute>("FCompute<cpu>", SoftmaxActivationCompute<cpu>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseOut{"_backward_SoftmaxActivation"})
.add_arguments(SoftmaxActivationParam::__FIELDS__());
NNVM_REGISTER_OP(_backward_SoftmaxActivation)
.set_num_inputs(2)
.set_num_outputs(1)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 0}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.set_attr_parser(ParamParser<SoftmaxActivationParam>)
.set_attr<FCompute>("FCompute<cpu>", SoftmaxActivationGradCompute<cpu>);
} // namespace op
} // namespace mxnet