| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file dnnl_binary.cc |
| * \author: Adam Grabowski, adam.grabowski@intel.com |
| */ |
| |
| #if MXNET_USE_ONEDNN == 1 |
| #include "./dnnl_binary-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| DNNLBinaryOpFwd::DNNLBinaryOpFwd(const dnnl::algorithm alg, |
| const std::vector<NDArray>& inputs, |
| const std::vector<NDArray>& outputs) { |
| auto src0_desc = inputs[0].GetDNNLData()->get_desc(); |
| auto src1_desc = inputs[1].GetDNNLData()->get_desc(); |
| auto dst_desc = outputs[0].GetDNNLData()->get_desc(); |
| |
| dnnl::binary::desc fwd_desc(alg, src0_desc, src1_desc, dst_desc); |
| fwd_pd = std::make_shared<binary_fwd_pd_t>(fwd_desc, mxnet::CpuEngine::Get()->get_engine()); |
| fwd = std::make_shared<binary_fwd_t>(*fwd_pd); |
| } |
| |
| void DNNLBinaryOpFwd::Execute(const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| auto engine = mxnet::CpuEngine::Get()->get_engine(); |
| auto src0 = inputs[0].GetDNNLData(); |
| auto src1 = inputs[1].GetDNNLData(); |
| dnnl_output_t out_mem; |
| if (outputs[0].GetDNNLData()->get_data_handle() == inputs[1].GetDNNLData()->get_data_handle()) |
| out_mem = CreateDNNLMem(outputs[0], fwd_pd->dst_desc(), req[0], &inputs[1]); |
| else |
| out_mem = CreateDNNLMem(outputs[0], fwd_pd->dst_desc(), req[0], &inputs[0]); |
| |
| dnnl_args_map_t args = { |
| {DNNL_ARG_SRC_0, *src0}, |
| {DNNL_ARG_SRC_1, *src1}, |
| {DNNL_ARG_DST, *out_mem.second}, |
| }; |
| |
| DNNLStream::Get()->RegisterPrimArgs(*fwd, args); |
| CommitOutput(outputs[0], out_mem); |
| DNNLStream::Get()->Submit(); |
| } |
| |
| // Support for https://oneapi-src.github.io/oneDNN/v2.6/dev_guide_binary.html |
| bool SupportDNNLBinary(const std::vector<NDArray>& inputs, const std::vector<NDArray>& outputs) { |
| // threshold value selected experimentally basing on performance results - PR-21106 |
| constexpr size_t optimal_size_threshold = 2 << 13; |
| const bool threshold_condition = outputs[0].shape().Size() >= optimal_size_threshold; |
| const bool is_any_dnnl_data = |
| inputs[0].IsDNNLData() || inputs[1].IsDNNLData() || outputs[0].IsDNNLData(); |
| |
| return SupportDNNL<DNNLTypeMode::FloatTypes>(inputs[0]) && |
| SupportDNNL<DNNLTypeMode::FloatTypes>(inputs[1]) && |
| (threshold_condition || is_any_dnnl_data); |
| } |
| |
| } // namespace op |
| } // namespace mxnet |
| |
| #endif // MXNET_USE_ONEDNN == 1 |