| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file correlation-inl.h |
| * \brief correlation operator and symbol |
| * \author Xu Dong |
| */ |
| #ifndef MXNET_OPERATOR_CORRELATION_INL_H_ |
| #define MXNET_OPERATOR_CORRELATION_INL_H_ |
| #include <dmlc/logging.h> |
| #include <dmlc/parameter.h> |
| #include <mxnet/operator.h> |
| #include <map> |
| #include <vector> |
| #include <string> |
| #include <utility> |
| #include "./mshadow_op.h" |
| #include "./operator_common.h" |
| namespace mxnet { |
| namespace op { |
| // Declare enumeration of input order to make code more intuitive. |
| // These enums are only visible within this header |
| namespace Correlation { |
| enum CorrelationOpInputs { kData1, kData2 }; |
| enum CorrelationOpOutputs { kOut, kTemp1, kTemp2 }; |
| } // namespace Correlation |
| struct CorrelationParam : public dmlc::Parameter<CorrelationParam> { |
| uint32_t max_displacement; |
| uint32_t kernel_size; |
| uint32_t pad_size; |
| uint32_t stride1; |
| uint32_t stride2; |
| bool is_multiply; |
| DMLC_DECLARE_PARAMETER(CorrelationParam) { |
| DMLC_DECLARE_FIELD(kernel_size) |
| .set_default(1) |
| .describe("kernel size for Correlation must be an odd number"); |
| DMLC_DECLARE_FIELD(max_displacement) |
| .set_default(1) |
| .describe("Max displacement of Correlation "); |
| DMLC_DECLARE_FIELD(stride1).set_default(1).set_lower_bound(1).describe( |
| "stride1 quantize data1 globally"); |
| DMLC_DECLARE_FIELD(stride2).set_default(1).set_lower_bound(1).describe( |
| "stride2 quantize data2 within the neighborhood centered around data1"); |
| DMLC_DECLARE_FIELD(pad_size).set_default(0).describe("pad for Correlation"); |
| DMLC_DECLARE_FIELD(is_multiply) |
| .set_default(true) |
| .describe("operation type is either multiplication or subduction"); |
| } |
| }; |
| template <typename xpu, typename DType> |
| class CorrelationOp : public Operator { |
| public: |
| explicit CorrelationOp(CorrelationParam param) { |
| this->param_ = param; |
| } |
| virtual void Forward(const OpContext& ctx, |
| const std::vector<TBlob>& in_data, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& out_data, |
| const std::vector<TBlob>& aux_args) { |
| using namespace mshadow; |
| CHECK_EQ(in_data.size(), 2U); |
| CHECK_EQ(out_data.size(), 3U); |
| CHECK_NE(param_.kernel_size % 2, 0) << "kernel size should be odd number"; |
| Stream<xpu>* s = ctx.get_stream<xpu>(); |
| Tensor<xpu, 4, DType> data1 = in_data[Correlation::kData1].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> data2 = in_data[Correlation::kData2].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> out = out_data[Correlation::kOut].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> tmp1 = out_data[Correlation::kTemp1].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> tmp2 = out_data[Correlation::kTemp2].get<xpu, 4, DType>(s); |
| tmp1 = DType(0.0f); |
| tmp2 = DType(0.0f); |
| out = DType(0.0f); |
| CHECK_EQ(data1.CheckContiguous(), true); |
| CHECK_EQ(data2.CheckContiguous(), true); |
| CHECK_EQ(out.CheckContiguous(), true); |
| CHECK_EQ(tmp1.CheckContiguous(), true); |
| CHECK_EQ(tmp2.CheckContiguous(), true); |
| paddedbottomheight = data1.shape_[2] + 2 * param_.pad_size; |
| paddedbottomwidth = data1.shape_[3] + 2 * param_.pad_size; |
| kernel_radius_ = (param_.kernel_size - 1) / 2; |
| border_size_ = param_.max_displacement + kernel_radius_; |
| stride1 = param_.stride1; |
| stride2 = param_.stride2; |
| top_width_ = std::ceil(static_cast<float>(paddedbottomwidth - border_size_ * 2) / |
| static_cast<float>(stride1)); |
| top_height_ = std::ceil(static_cast<float>(paddedbottomheight - border_size_ * 2) / |
| static_cast<float>(stride1)); |
| neighborhood_grid_radius_ = param_.max_displacement / stride2; |
| neighborhood_grid_width_ = neighborhood_grid_radius_ * 2 + 1; |
| top_channels_ = neighborhood_grid_width_ * neighborhood_grid_width_; |
| num = data1.shape_[0]; |
| channels = data1.shape_[1]; |
| height = data1.shape_[2]; |
| width = data1.shape_[3]; |
| CorrelationForward(out, |
| data1, |
| data2, |
| tmp1, |
| tmp2, |
| top_channels_, |
| top_height_, |
| top_width_, |
| param_.pad_size, |
| param_.is_multiply, |
| param_.max_displacement, |
| param_.kernel_size, |
| neighborhood_grid_radius_, |
| neighborhood_grid_width_, |
| kernel_radius_, |
| param_.stride1, |
| param_.stride2); |
| } |
| virtual void Backward(const OpContext& ctx, |
| const std::vector<TBlob>& out_grad, |
| const std::vector<TBlob>& in_data, |
| const std::vector<TBlob>& out_data, |
| const std::vector<OpReqType>& req, |
| const std::vector<TBlob>& in_grad, |
| const std::vector<TBlob>& aux_args) { |
| using namespace mshadow; |
| Stream<xpu>* s = ctx.get_stream<xpu>(); |
| Tensor<xpu, 4, DType> grad_data1 = in_grad[Correlation::kData1].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> grad_data2 = in_grad[Correlation::kData2].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> out_g = out_grad[Correlation::kOut].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> tmp1 = out_data[Correlation::kTemp1].get<xpu, 4, DType>(s); |
| Tensor<xpu, 4, DType> tmp2 = out_data[Correlation::kTemp2].get<xpu, 4, DType>(s); |
| if (req[0] != kAddTo) |
| grad_data1 = DType(0.0f); |
| if (req[1] != kAddTo) |
| grad_data2 = DType(0.0f); |
| CHECK_EQ(grad_data1.CheckContiguous(), true); |
| CHECK_EQ(grad_data2.CheckContiguous(), true); |
| CHECK_EQ(out_g.CheckContiguous(), true); |
| CHECK_EQ(tmp1.CheckContiguous(), true); |
| CHECK_EQ(tmp2.CheckContiguous(), true); |
| CorrelationBackward(out_g, |
| grad_data1, |
| grad_data2, |
| tmp1, |
| tmp2, |
| top_channels_, |
| top_height_, |
| top_width_, |
| param_.pad_size, |
| param_.is_multiply, |
| param_.max_displacement, |
| param_.kernel_size, |
| neighborhood_grid_radius_, |
| neighborhood_grid_width_, |
| kernel_radius_, |
| param_.stride1, |
| param_.stride2, |
| num, |
| channels, |
| height, |
| width); |
| } |
| |
| private: |
| CorrelationParam param_; |
| int paddedbottomheight; |
| int paddedbottomwidth; |
| uint32_t kernel_radius_; |
| uint32_t border_size_; |
| uint32_t stride1; |
| uint32_t stride2; |
| uint32_t top_width_; |
| uint32_t top_height_; |
| uint32_t neighborhood_grid_radius_; |
| uint32_t neighborhood_grid_width_; |
| uint32_t top_channels_; |
| int num; |
| int channels; |
| int height; |
| int width; |
| }; // class CorrelationOp |
| // Decalre Factory function |
| template <typename xpu> |
| Operator* CreateOp(CorrelationParam param, int dtype); |
| #if DMLC_USE_CXX11 |
| class CorrelationProp : public OperatorProperty { |
| public: |
| std::vector<std::string> ListArguments() const override { |
| return {"data1", "data2"}; |
| } |
| std::vector<std::string> ListOutputs() const override { |
| return {"output", "tmp1", "tmp2"}; |
| } |
| int NumOutputs() const override { |
| return 3; |
| } |
| int NumVisibleOutputs() const override { |
| return 1; |
| } |
| void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override { |
| param_.Init(kwargs); |
| } |
| std::map<std::string, std::string> GetParams() const override { |
| return param_.__DICT__(); |
| } |
| bool InferShape(mxnet::ShapeVector* in_shape, |
| mxnet::ShapeVector* out_shape, |
| mxnet::ShapeVector* aux_shape) const override { |
| using namespace mshadow; |
| CHECK_EQ(in_shape->size(), 2U) << "Input:[data1, data2]"; |
| mxnet::TShape dshape1 = in_shape->at(Correlation::kData1); |
| mxnet::TShape dshape2 = in_shape->at(Correlation::kData2); |
| CHECK_EQ(dshape1.ndim(), 4U) << "data should be a 4D tensor"; |
| CHECK_EQ(dshape2.ndim(), 4U) << "data should be a 4D tensor"; |
| int paddedbottomheight; |
| int paddedbottomwidth; |
| uint32_t kernel_radius_; |
| uint32_t stride1; |
| uint32_t stride2; |
| uint32_t top_width_; |
| uint32_t top_height_; |
| uint32_t neighborhood_grid_radius_; |
| uint32_t neighborhood_grid_width_; |
| uint32_t top_channels_; |
| uint32_t border_size_; |
| paddedbottomheight = dshape1[2] + 2 * param_.pad_size; |
| paddedbottomwidth = dshape1[3] + 2 * param_.pad_size; |
| kernel_radius_ = (param_.kernel_size - 1) / 2; |
| border_size_ = param_.max_displacement + kernel_radius_; |
| stride1 = param_.stride1; |
| stride2 = param_.stride2; |
| top_width_ = std::ceil(static_cast<float>(paddedbottomwidth - border_size_ * 2) / |
| static_cast<float>(stride1)); |
| top_height_ = std::ceil(static_cast<float>(paddedbottomheight - border_size_ * 2) / |
| static_cast<float>(stride1)); |
| neighborhood_grid_radius_ = param_.max_displacement / stride2; |
| neighborhood_grid_width_ = neighborhood_grid_radius_ * 2 + 1; |
| top_channels_ = neighborhood_grid_width_ * neighborhood_grid_width_; |
| CHECK_GE(top_width_, 1U) << "Correlation cannot be done with current settings.Neighborhood and " |
| "kernel don't fit in blob"; |
| CHECK_GE(top_height_, 1U) << "Correlation cannot be done with current settings.Neighborhood " |
| "and kernel don't fit in blob"; |
| out_shape->clear(); |
| out_shape->push_back(Shape4(dshape1[0], top_channels_, top_height_, top_width_)); |
| out_shape->push_back(Shape4(dshape1[0], paddedbottomheight, paddedbottomwidth, dshape1[1])); |
| out_shape->push_back(Shape4(dshape1[0], paddedbottomheight, paddedbottomwidth, dshape1[1])); |
| return true; |
| } |
| bool InferType(std::vector<int>* in_type, |
| std::vector<int>* out_type, |
| std::vector<int>* aux_type) const override { |
| int dtype = (*in_type)[0]; |
| type_assign(&dtype, (*in_type)[1]); |
| type_assign(&dtype, (*out_type)[0]); |
| type_assign(&dtype, (*out_type)[1]); |
| type_assign(&dtype, (*out_type)[2]); |
| |
| TYPE_ASSIGN_CHECK(*in_type, 0, dtype); |
| TYPE_ASSIGN_CHECK(*in_type, 1, dtype); |
| TYPE_ASSIGN_CHECK(*out_type, 0, dtype); |
| TYPE_ASSIGN_CHECK(*out_type, 1, dtype); |
| TYPE_ASSIGN_CHECK(*out_type, 2, dtype); |
| return dtype != -1; |
| } |
| OperatorProperty* Copy() const override { |
| CorrelationProp* Correlation_sym = new CorrelationProp(); |
| Correlation_sym->param_ = this->param_; |
| return Correlation_sym; |
| } |
| std::string TypeString() const override { |
| return "Correlation"; |
| } |
| // decalre dependency and inplace optimization options |
| std::vector<int> DeclareBackwardDependency(const std::vector<int>& out_grad, |
| const std::vector<int>& in_data, |
| const std::vector<int>& out_data) const override { |
| return { |
| out_grad[Correlation::kOut], out_data[Correlation::kTemp1], out_data[Correlation::kTemp2]}; |
| } |
| Operator* CreateOperator(Context ctx) const override { |
| LOG(FATAL) << "Not Implemented."; |
| return nullptr; |
| } |
| |
| Operator* CreateOperatorEx(Context ctx, |
| mxnet::ShapeVector* in_shape, |
| std::vector<int>* in_type) const override; |
| |
| private: |
| CorrelationParam param_; |
| }; // class CorrelationProp |
| #endif |
| } // namespace op |
| } // namespace mxnet |
| #endif // MXNET_OPERATOR_CORRELATION_INL_H_ |