| /*! |
| * Copyright (c) 2017 Microsoft |
| * Licensed under The Apache-2.0 License [see LICENSE for details] |
| * \file psroi_pooling.cc |
| * \brief psroi pooling operator |
| * \author Yi Li, Tairui Chen, Guodong Zhang, Haozhi Qi, Jifeng Dai |
| */ |
| #include "./psroi_pooling-inl.h" |
| #include <mshadow/base.h> |
| #include <mshadow/tensor.h> |
| #include <mshadow/packet-inl.h> |
| #include <mshadow/dot_engine-inl.h> |
| #include <cassert> |
| |
| using std::ceil; |
| using std::floor; |
| using std::max; |
| using std::min; |
| |
| namespace mshadow { |
| |
| template <typename DType> |
| inline void PSROIPoolForwardCPU(const int count, |
| const DType* bottom_data, |
| const DType spatial_scale, |
| const int channels, |
| const int height, |
| const int width, |
| const int pooled_height, |
| const int pooled_width, |
| const DType* bottom_rois, |
| const int output_dim, |
| const int group_size, |
| DType* top_data) { |
| const int omp_threads = mxnet::engine::OpenMP::Get()->GetRecommendedOMPThreadCount(); |
| #pragma omp parallel for num_threads(omp_threads) |
| for (int index = 0; index < count; index++) { |
| // The output is in order (n, ctop, ph, pw) |
| int pw = index % pooled_width; |
| int ph = (index / pooled_width) % pooled_height; |
| int ctop = (index / pooled_width / pooled_height) % output_dim; |
| int n = index / pooled_width / pooled_height / output_dim; |
| |
| // [start, end) interval for spatial sampling |
| const DType* offset_bottom_rois = bottom_rois + n * 5; |
| int roi_batch_ind = offset_bottom_rois[0]; |
| DType roi_start_w = static_cast<DType>(round(offset_bottom_rois[1])) * spatial_scale; |
| DType roi_start_h = static_cast<DType>(round(offset_bottom_rois[2])) * spatial_scale; |
| DType roi_end_w = static_cast<DType>(round(offset_bottom_rois[3]) + 1.) * spatial_scale; |
| DType roi_end_h = static_cast<DType>(round(offset_bottom_rois[4]) + 1.) * spatial_scale; |
| |
| // Force too small ROIs to be 1x1 |
| DType roi_width = max(roi_end_w - roi_start_w, static_cast<DType>(0.1)); // avoid 0 |
| DType roi_height = max(roi_end_h - roi_start_h, static_cast<DType>(0.1)); |
| |
| // Compute w and h at bottom |
| DType bin_size_h = roi_height / static_cast<DType>(pooled_height); |
| DType bin_size_w = roi_width / static_cast<DType>(pooled_width); |
| |
| int hstart = floor(static_cast<DType>(ph) * bin_size_h + roi_start_h); |
| int wstart = floor(static_cast<DType>(pw) * bin_size_w + roi_start_w); |
| int hend = ceil(static_cast<DType>(ph + 1) * bin_size_h + roi_start_h); |
| int wend = ceil(static_cast<DType>(pw + 1) * bin_size_w + roi_start_w); |
| // Add roi offsets and clip to input boundaries |
| hstart = min(max(hstart, 0), height); |
| hend = min(max(hend, 0), height); |
| wstart = min(max(wstart, 0), width); |
| wend = min(max(wend, 0), width); |
| bool is_empty = (hend <= hstart) || (wend <= wstart); |
| |
| int gw = floor(static_cast<DType>(pw) * group_size / pooled_width); |
| int gh = floor(static_cast<DType>(ph) * group_size / pooled_height); |
| gw = min(max(gw, 0), group_size - 1); |
| gh = min(max(gh, 0), group_size - 1); |
| int c = (ctop * group_size + gh) * group_size + gw; |
| |
| const DType* offset_bottom_data = bottom_data + (roi_batch_ind * channels + c) * height * width; |
| DType out_sum = 0; |
| for (int h = hstart; h < hend; ++h) { |
| for (int w = wstart; w < wend; ++w) { |
| int bottom_index = h * width + w; |
| out_sum += offset_bottom_data[bottom_index]; |
| } |
| } |
| |
| DType bin_area = (hend - hstart) * (wend - wstart); |
| top_data[index] = is_empty ? (DType)0. : out_sum / bin_area; |
| } |
| } |
| |
| template <typename DType> |
| inline void PSROIPoolForward(const Tensor<cpu, 4, DType>& out, |
| const Tensor<cpu, 4, DType>& data, |
| const Tensor<cpu, 2, DType>& bbox, |
| const float spatial_scale, |
| const int output_dim_, |
| const int group_size_) { |
| const DType* bottom_data = data.dptr_; |
| const DType* bottom_rois = bbox.dptr_; |
| DType* top_data = out.dptr_; |
| const int count = out.shape_.Size(); |
| const int channels = data.size(1); |
| const int height = data.size(2); |
| const int width = data.size(3); |
| const int pooled_height = out.size(2); |
| const int pooled_width = out.size(3); |
| PSROIPoolForwardCPU<DType>(count, |
| bottom_data, |
| spatial_scale, |
| channels, |
| height, |
| width, |
| pooled_height, |
| pooled_width, |
| bottom_rois, |
| output_dim_, |
| group_size_, |
| top_data); |
| |
| return; |
| } |
| |
| template <typename DType> |
| inline void PSROIPoolBackwardAccCPU(const int count, |
| const DType* top_diff, |
| const int num_rois, |
| const DType spatial_scale, |
| const int channels, |
| const int height, |
| const int width, |
| const int pooled_height, |
| const int pooled_width, |
| const int group_size, |
| const int output_dim, |
| DType* bottom_diff, |
| const DType* bottom_rois) { |
| for (int index = 0; index < count; index++) { |
| // The output is in order (n, ctop, ph, pw) |
| int pw = index % pooled_width; |
| int ph = (index / pooled_width) % pooled_height; |
| int ctop = (index / pooled_width / pooled_height) % output_dim; |
| int n = index / pooled_width / pooled_height / output_dim; |
| |
| // [start, end) interval for spatial sampling |
| const DType* offset_bottom_rois = bottom_rois + n * 5; |
| int roi_batch_ind = offset_bottom_rois[0]; |
| DType roi_start_w = static_cast<DType>(round(offset_bottom_rois[1])) * spatial_scale; |
| DType roi_start_h = static_cast<DType>(round(offset_bottom_rois[2])) * spatial_scale; |
| DType roi_end_w = static_cast<DType>(round(offset_bottom_rois[3]) + 1.) * spatial_scale; |
| DType roi_end_h = static_cast<DType>(round(offset_bottom_rois[4]) + 1.) * spatial_scale; |
| |
| // Force too small ROIs to be 1x1 |
| DType roi_width = max(roi_end_w - roi_start_w, static_cast<DType>(0.1)); // avoid 0 |
| DType roi_height = max(roi_end_h - roi_start_h, static_cast<DType>(0.1)); |
| |
| // Compute w and h at bottom |
| DType bin_size_h = roi_height / static_cast<DType>(pooled_height); |
| DType bin_size_w = roi_width / static_cast<DType>(pooled_width); |
| |
| int hstart = floor(static_cast<DType>(ph) * bin_size_h + roi_start_h); |
| int wstart = floor(static_cast<DType>(pw) * bin_size_w + roi_start_w); |
| int hend = ceil(static_cast<DType>(ph + 1) * bin_size_h + roi_start_h); |
| int wend = ceil(static_cast<DType>(pw + 1) * bin_size_w + roi_start_w); |
| // Add roi offsets and clip to input boundaries |
| hstart = min(max(hstart, 0), height); |
| hend = min(max(hend, 0), height); |
| wstart = min(max(wstart, 0), width); |
| wend = min(max(wend, 0), width); |
| bool is_empty = (hend <= hstart) || (wend <= wstart); |
| // Compute c at bottom |
| int gw = floor(static_cast<DType>(pw) * group_size / pooled_width); |
| int gh = floor(static_cast<DType>(ph) * group_size / pooled_height); |
| gw = min(max(gw, 0), group_size - 1); |
| gh = min(max(gh, 0), group_size - 1); |
| int c = (ctop * group_size + gh) * group_size + gw; |
| DType* offset_bottom_diff = bottom_diff + (roi_batch_ind * channels + c) * height * width; |
| DType bin_area = (hend - hstart) * (wend - wstart); |
| DType diff_val = is_empty ? (DType)0. : top_diff[index] / bin_area; |
| for (int h = hstart; h < hend; ++h) { |
| for (int w = wstart; w < wend; ++w) { |
| int bottom_index = h * width + w; |
| *(offset_bottom_diff + bottom_index) = *(offset_bottom_diff + bottom_index) + diff_val; |
| } |
| } |
| } |
| } |
| |
| template <typename DType> |
| inline void PSROIPoolBackwardAcc(const Tensor<cpu, 4, DType>& in_grad, |
| const Tensor<cpu, 4, DType>& out_grad, |
| const Tensor<cpu, 2, DType>& bbox, |
| const float spatial_scale, |
| const int output_dim_, |
| const int group_size_) { |
| // LOG(INFO) << "PSROIPoolBackward"; |
| const DType* top_diff = out_grad.dptr_; |
| const DType* bottom_rois = bbox.dptr_; |
| DType* bottom_diff = in_grad.dptr_; |
| const int count = out_grad.shape_.Size(); |
| const int num_rois = bbox.size(0); |
| const int channels = in_grad.size(1); |
| const int height = in_grad.size(2); |
| const int width = in_grad.size(3); |
| const int pooled_height = out_grad.size(2); |
| const int pooled_width = out_grad.size(3); |
| PSROIPoolBackwardAccCPU<DType>(count, |
| top_diff, |
| num_rois, |
| spatial_scale, |
| channels, |
| height, |
| width, |
| pooled_height, |
| pooled_width, |
| group_size_, |
| output_dim_, |
| bottom_diff, |
| bottom_rois); |
| |
| return; |
| } |
| } // namespace mshadow |
| |
| namespace mxnet { |
| namespace op { |
| |
| template <> |
| Operator* CreateOp<cpu>(PSROIPoolingParam param, int dtype) { |
| Operator* op = nullptr; |
| MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { op = new PSROIPoolingOp<cpu, DType>(param); }); |
| return op; |
| } |
| |
| Operator* PSROIPoolingProp::CreateOperatorEx(Context ctx, |
| mxnet::ShapeVector* in_shape, |
| std::vector<int>* in_type) const { |
| mxnet::ShapeVector out_shape, aux_shape; |
| std::vector<int> out_type, aux_type; |
| CHECK(InferType(in_type, &out_type, &aux_type)); |
| CHECK(InferShape(in_shape, &out_shape, &aux_shape)); |
| DO_BIND_DISPATCH(CreateOp, param_, in_type->at(0)); |
| } |
| |
| DMLC_REGISTER_PARAMETER(PSROIPoolingParam); |
| |
| MXNET_REGISTER_OP_PROPERTY(_contrib_PSROIPooling, PSROIPoolingProp) |
| .describe( |
| "Performs region-of-interest pooling on inputs. Resize bounding box coordinates by " |
| "spatial_scale and crop input feature maps accordingly. The cropped feature maps are " |
| "pooled " |
| "by max pooling to a fixed size output indicated by pooled_size. batch_size will change to " |
| "the number of region bounding boxes after PSROIPooling") |
| .add_argument("data", "Symbol", "Input data to the pooling operator, a 4D Feature maps") |
| .add_argument( |
| "rois", |
| "Symbol", |
| "Bounding box coordinates, a 2D array of " |
| "[[batch_index, x1, y1, x2, y2]]. (x1, y1) and (x2, y2) are top left and down right " |
| "corners " |
| "of designated region of interest. batch_index indicates the index of corresponding image " |
| "in the input data") |
| .add_arguments(PSROIPoolingParam::__FIELDS__()); |
| } // namespace op |
| } // namespace mxnet |