blob: 82cd468f81e3fcadcf87920209214a2400e5f092 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
#include <mshadow/tensor.h>
#include "./index_array-inl.h"
namespace mxnet {
namespace op {
void IndexArrayForwardCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mshadow;
CHECK_EQ(inputs.size(), 1U);
CHECK_EQ(outputs.size(), 1U);
CHECK_EQ(req.size(), 1U);
const TBlob& in_data = inputs[0];
const TBlob& out_data = outputs[0];
const IndexArrayParam& param = nnvm::get<IndexArrayParam>(attrs.parsed);
const TShape inshape = in_data.shape_;
const int ndim = inshape.ndim();
Stream<cpu>* stream = ctx.get_stream<cpu>();
using namespace mxnet_op;
if (param.axes.has_value()) {
const mxnet::Tuple<int>& axes = param.axes.value();
const int naxes = axes.ndim();
std::vector<int64_t> index_products = IndexArrayComputeIndexProducts(inshape);
Tensor<cpu, 1, int64_t> workspace =
ctx.requested[0].get_space_typed<cpu, 1, int64_t>(Shape1(2 * naxes), stream);
IndexArrayBuildSelectedAxesWorkspace(axes, index_products, workspace.dptr_, ndim);
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<IndexArrayKernel<req_type>, cpu>::Launch(
stream, in_data.Size(), out_data.dptr<int64_t>(), naxes, workspace.dptr_);
});
} else {
MXNET_ASSIGN_REQ_SWITCH(req[0], req_type, {
Kernel<IndexArrayDefaultKernel<req_type>, cpu>::Launch(
stream, in_data.Size(), out_data.dptr<int64_t>(), ndim, inshape.data());
});
}
}
DMLC_REGISTER_PARAMETER(IndexArrayParam);
NNVM_REGISTER_OP(_contrib_index_array)
.describe(R"code(Returns an array of indexes of the input array.
For an input array with shape :math:`(d_1, d_2, ..., d_n)`, `index_array` returns a
:math:`(d_1, d_2, ..., d_n, n)` array `idx`, where
:math:`idx[i_1, i_2, ..., i_n, :] = [i_1, i_2, ..., i_n]`.
Additionally, when the parameter `axes` is specified, `idx` will be a
:math:`(d_1, d_2, ..., d_n, m)` array where `m` is the length of `axes`, and the following
equality will hold: :math:`idx[i_1, i_2, ..., i_n, j] = i_{axes[j]}`.
Examples::
x = mx.nd.ones((3, 2))
mx.nd.contrib.index_array(x) = [[[0 0]
[0 1]]
[[1 0]
[1 1]]
[[2 0]
[2 1]]]
x = mx.nd.ones((3, 2, 2))
mx.nd.contrib.index_array(x, axes=(1, 0)) = [[[[0 0]
[0 0]]
[[1 0]
[1 0]]]
[[[0 1]
[0 1]]
[[1 1]
[1 1]]]
[[[0 2]
[0 2]]
[[1 2]
[1 2]]]]
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"data"};
})
.set_attr<nnvm::FListOutputNames>("FListOutputNames",
[](const NodeAttrs& attrs) {
return std::vector<std::string>{"output"};
})
.set_attr_parser(ParamParser<IndexArrayParam>)
.set_attr<mxnet::FInferShape>("FInferShape",
[](const nnvm::NodeAttrs& attrs,
mxnet::ShapeVector* in_shape,
mxnet::ShapeVector* out_shape) {
const IndexArrayParam& param =
nnvm::get<IndexArrayParam>(attrs.parsed);
CHECK_EQ(in_shape->size(), 1U);
CHECK_EQ(out_shape->size(), 1U);
const mxnet::TShape& inshape =
(*in_shape)[index_array_enum::kIn];
if (!mxnet::ndim_is_known(inshape))
return false;
mxnet::TShape oshape = mxnet::TShape(inshape.ndim() + 1, 0);
for (int i = 0; i < inshape.ndim(); i++) {
oshape[i] = inshape[i];
}
if (param.axes.has_value()) {
oshape[inshape.ndim()] = param.axes.value().ndim();
} else {
oshape[inshape.ndim()] = inshape.ndim();
}
SHAPE_ASSIGN_CHECK(*out_shape, 0, oshape);
return shape_is_known(oshape);
})
.set_attr<nnvm::FInferType>("FInferType",
[](const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
CHECK_EQ(in_attrs->size(), 1U);
CHECK_EQ(out_attrs->size(), 1U);
TYPE_ASSIGN_CHECK(*out_attrs, 0, mshadow::kInt64);
return out_attrs->at(0) != -1;
})
.set_attr<FCompute>("FCompute<cpu>", IndexArrayForwardCPU)
.set_attr<nnvm::FGradient>("FGradient", MakeZeroGradNodes)
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& n) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<THasDeterministicOutput>("THasDeterministicOutput", true)
.add_argument("data", "NDArray-or-Symbol", "Input data")
.add_arguments(IndexArrayParam::__FIELDS__());
} // namespace op
} // namespace mxnet