| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| /*! |
| * \file dynamic_shape_ops.cc |
| */ |
| |
| #include "./dynamic_shape_ops-inl.h" |
| #include "../tensor/elemwise_binary_op.h" |
| #include "../elemwise_op_common.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| inline bool DynamicReshapeType(const nnvm::NodeAttrs& attrs, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 2U); |
| CHECK_EQ(out_attrs->size(), 1U); |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, (*in_attrs)[0]); |
| TYPE_ASSIGN_CHECK(*in_attrs, 0, (*out_attrs)[0]); |
| return true; |
| } |
| |
| bool DynamicReshapeStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 2); |
| CHECK_EQ(out_attrs->size(), 1); |
| for (size_t i = 0; i < in_attrs->size(); ++i) { |
| STORAGE_TYPE_ASSIGN_CHECK(*in_attrs, i, kDefaultStorage); |
| } |
| for (size_t i = 0; i < out_attrs->size(); ++i) { |
| STORAGE_TYPE_ASSIGN_CHECK(*out_attrs, i, kDefaultStorage); |
| } |
| DISPATCH_MODE_ASSIGN_CHECK(dispatch_mode, 0, DispatchMode::kFComputeEx); |
| return true; |
| } |
| |
| bool DynamicReshapeBackwardStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 1); |
| CHECK_EQ(out_attrs->size(), 2); |
| for (size_t i = 0; i < in_attrs->size(); ++i) { |
| STORAGE_TYPE_ASSIGN_CHECK(*in_attrs, i, kDefaultStorage); |
| } |
| for (size_t i = 0; i < out_attrs->size(); ++i) { |
| STORAGE_TYPE_ASSIGN_CHECK(*out_attrs, i, kDefaultStorage); |
| } |
| DISPATCH_MODE_ASSIGN_CHECK(dispatch_mode, 0, DispatchMode::kFComputeEx); |
| return true; |
| } |
| |
| NNVM_REGISTER_OP(_contrib_dynamic_reshape) |
| .describe(R"code( |
| Experimental support for reshape operator with dynamic shape. |
| |
| Accepts 2 inputs - data and shape. |
| The output returns data in the new shape. |
| |
| Some dimensions of the shape can take special values from the set {0, -1, -2, -3, -4}. The significance of each is explained below: |
| - ``0`` copy this dimension from the input to the output shape. Example:: |
| |
| - input shape = (2,3,4), shape = (4,0,2), output shape = (4,3,2) |
| - input shape = (2,3,4), shape = (2,0,0), output shape = (2,3,4) |
| |
| - ``-1`` infers the dimension of the output shape by using the remainder of the input dimensions |
| keeping the size of the new array same as that of the input array. |
| At most one dimension of shape can be -1. Example:: |
| |
| - input shape = (2,3,4), shape = (6,1,-1), output shape = (6,1,4) |
| - input shape = (2,3,4), shape = (3,-1,8), output shape = (3,1,8) |
| - input shape = (2,3,4), shape=(-1,), output shape = (24,) |
| |
| - ``-2`` copy all/remainder of the input dimensions to the output shape. Example:: |
| |
| - input shape = (2,3,4), shape = (-2,), output shape = (2,3,4) |
| - input shape = (2,3,4), shape = (2,-2), output shape = (2,3,4) |
| - input shape = (2,3,4), shape = (-2,1,1), output shape = (2,3,4,1,1) |
| |
| - ``-3`` use the product of two consecutive dimensions of the input shape as the output dimension. Example:: |
| |
| - input shape = (2,3,4), shape = (-3,4), output shape = (6,4) |
| - input shape = (2,3,4,5), shape = (-3,-3), output shape = (6,20) |
| - input shape = (2,3,4), shape = (0,-3), output shape = (2,12) |
| - input shape = (2,3,4), shape = (-3,-2), output shape = (6,4) |
| |
| - ``-4`` split one dimension of the input into two dimensions passed subsequent to -4 in shape (can contain -1). Example:: |
| |
| - input shape = (2,3,4), shape = (-4,1,2,-2), output shape =(1,2,3,4) |
| - input shape = (2,3,4), shape = (2,-4,-1,3,-2), output shape = (2,1,3,4) |
| |
| Example:: |
| |
| data = mx.nd.array(np.random.normal(0,1,(2,3,5,5))) |
| shape = mx.nd.array((0,-1)) |
| out = mx.sym.contrib.dynamic_reshape(data = data, shape = shape) |
| // out will be of shape (2,75) |
| |
| )code" ADD_FILELINE) |
| .set_num_inputs(2) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data", "shape"}; |
| }) |
| .set_attr<nnvm::FInferType>("FInferType", DynamicReshapeType) |
| .set_attr<FInferStorageType>("FInferStorageType", DynamicReshapeStorageType) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", DynamicReshapeForward<cpu>) |
| .set_attr<nnvm::FGradient>("FGradient", |
| ElemwiseGradUseNone{"_backward_contrib_dynamic_reshape"}) |
| .add_argument("data", "NDArray-or-Symbol", "Data") |
| .add_argument("shape", "NDArray-or-Symbol", "Shape"); |
| |
| NNVM_REGISTER_OP(_backward_contrib_dynamic_reshape) |
| .set_num_inputs(1) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FInferStorageType>("FInferStorageType", DynamicReshapeBackwardStorageType) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", DynamicReshapeBackward<cpu>); |
| |
| } // namespace op |
| } // namespace mxnet |