| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| /*! |
| * \file boolean_mask.cc |
| */ |
| |
| #include "./boolean_mask-inl.h" |
| |
| namespace mxnet { |
| namespace op { |
| |
| DMLC_REGISTER_PARAMETER(BooleanMaskParam); |
| |
| bool BooleanMaskType(const nnvm::NodeAttrs& attrs, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 2); |
| CHECK_EQ(out_attrs->size(), 1); |
| TYPE_ASSIGN_CHECK(*out_attrs, 0, in_attrs->at(0)); |
| TYPE_ASSIGN_CHECK(*in_attrs, 0, out_attrs->at(0)); |
| return in_attrs->at(0) != -1 && in_attrs->at(1) != -1 && out_attrs->at(0) != -1; |
| } |
| |
| bool BooleanMaskStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 2); |
| CHECK_EQ(out_attrs->size(), 1); |
| for (int& attr : *in_attrs) { |
| CHECK_EQ(attr, kDefaultStorage) << "Only default storage is supported"; |
| } |
| for (int& attr : *out_attrs) { |
| attr = kDefaultStorage; |
| } |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| return true; |
| } |
| |
| bool BooleanMaskBackStorageType(const nnvm::NodeAttrs& attrs, |
| const int dev_mask, |
| DispatchMode* dispatch_mode, |
| std::vector<int>* in_attrs, |
| std::vector<int>* out_attrs) { |
| CHECK_EQ(in_attrs->size(), 3); |
| CHECK_EQ(out_attrs->size(), 2); |
| for (int& attr : *in_attrs) { |
| CHECK_EQ(attr, kDefaultStorage) << "Only default storage is supported"; |
| } |
| for (int& attr : *out_attrs) { |
| attr = kDefaultStorage; |
| } |
| for (int& out_attr : *out_attrs) |
| out_attr = kDefaultStorage; |
| *dispatch_mode = DispatchMode::kFComputeEx; |
| return true; |
| } |
| |
| struct BooleanMaskBackwardCPUWriteKernel { |
| template <typename DType> |
| static void Map(int i, |
| DType* igrad, |
| const OpReqType /*req*/, |
| const DType* ograd, |
| const int32_t* idx, |
| const size_t col_size) { |
| // i is row id already |
| int32_t prev = (i == 0) ? 0 : idx[i - 1]; |
| int32_t curr = idx[i]; |
| #pragma GCC diagnostic push |
| #if __GNUC__ >= 8 |
| #pragma GCC diagnostic ignored "-Wclass-memaccess" |
| #endif |
| if (prev != curr) { |
| std::memcpy(igrad + i * col_size, ograd + prev * col_size, col_size * sizeof(DType)); |
| } else { |
| std::memset(igrad + i * col_size, 0, col_size * sizeof(DType)); |
| } |
| #pragma GCC diagnostic pop |
| } |
| }; |
| |
| template <> |
| inline void BooleanMaskForward<cpu>(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| CHECK_EQ(inputs.size(), 2U); |
| CHECK_EQ(outputs.size(), 1U); |
| CHECK(req[0] == kWriteTo || req[0] == kWriteInplace); |
| const BooleanMaskParam& param = nnvm::get<BooleanMaskParam>(attrs.parsed); |
| const int axis = param.axis; |
| const NDArray& data = inputs[0]; |
| const NDArray& idx = inputs[1]; |
| const NDArray& out = outputs[0]; |
| CHECK_EQ(axis, 0) << "Not supported yet"; |
| CHECK_EQ(data.shape()[axis], idx.shape()[0]); |
| CHECK_EQ(idx.shape().ndim(), 1U); // idx is required to be 1-d. |
| // count the number of 1s in `idx`, so that we could know the output dimension |
| size_t idx_size = idx.shape()[0]; |
| std::vector<int32_t> prefix_sum(idx_size, 0); |
| size_t valid_num = 0; |
| // Calculate prefix sum |
| MSHADOW_TYPE_SWITCH_WITH_BOOL(idx.dtype(), DType, { |
| DType* idx_dptr = idx.data().dptr<DType>(); |
| for (size_t i = 0; i < idx_size; i++) { |
| prefix_sum[i] = (i == 0) ? 0 : prefix_sum[i - 1]; |
| prefix_sum[i] += (idx_dptr[i]) ? 1 : 0; |
| } |
| valid_num = prefix_sum[idx_size - 1]; |
| }); |
| // set the output shape forcefully |
| mxnet::TShape s = data.shape(); |
| s[axis] = valid_num; |
| |
| const_cast<NDArray&>(out).Init(s); |
| // do the copy |
| MSHADOW_TYPE_SWITCH_EXT_WITH_BOOL(data.dtype(), DType, { |
| size_t input_size = data.shape().Size(); |
| size_t col_size = input_size / idx_size; |
| mshadow::Stream<cpu>* stream = ctx.get_stream<cpu>(); |
| mxnet_op::Kernel<BooleanMaskForwardCPUKernel, cpu>::Launch(stream, |
| idx_size, |
| out.data().dptr<DType>(), |
| data.data().dptr<DType>(), |
| prefix_sum.data(), |
| col_size); |
| }); |
| } |
| |
| template <> |
| inline void BooleanMaskBackward<cpu>(const nnvm::NodeAttrs& attrs, |
| const OpContext& ctx, |
| const std::vector<NDArray>& inputs, |
| const std::vector<OpReqType>& req, |
| const std::vector<NDArray>& outputs) { |
| CHECK_EQ(inputs.size(), 3U); |
| CHECK_EQ(outputs.size(), 2U); |
| if (req[0] == kNullOp) |
| return; |
| // inputs: {ograd, data, idx} |
| // outputs: {igrad_data, igrad_idx} |
| const NDArray& ograd = inputs[0]; |
| const NDArray& idx = inputs[2]; |
| const NDArray& igrad_data = outputs[0]; |
| MSHADOW_TYPE_SWITCH(igrad_data.dtype(), DType, { |
| MSHADOW_TYPE_SWITCH_WITH_BOOL(idx.dtype(), IType, { |
| size_t input_size = igrad_data.shape().Size(); |
| size_t idx_size = idx.shape()[0]; |
| size_t col_size = input_size / idx_size; |
| std::vector<int32_t> prefix_sum(idx_size, 0); |
| IType* idx_dptr = idx.data().dptr<IType>(); |
| for (size_t i = 0; i < idx_size; i++) { |
| prefix_sum[i] = (i == 0) ? 0 : prefix_sum[i - 1]; |
| prefix_sum[i] += (idx_dptr[i]) ? 1 : 0; |
| } |
| mshadow::Stream<cpu>* stream = ctx.get_stream<cpu>(); |
| if (req[0] == kAddTo) { |
| mxnet_op::Kernel<BooleanMaskBackwardKernel, cpu>::Launch(stream, |
| idx_size, |
| igrad_data.data().dptr<DType>(), |
| req[0], |
| ograd.data().dptr<DType>(), |
| prefix_sum.data(), |
| col_size); |
| } else { |
| mxnet_op::Kernel<BooleanMaskBackwardCPUWriteKernel, cpu>::Launch( |
| stream, |
| idx_size, |
| igrad_data.data().dptr<DType>(), |
| req[0], |
| ograd.data().dptr<DType>(), |
| prefix_sum.data(), |
| col_size); |
| } |
| }); |
| }); |
| } |
| |
| NNVM_REGISTER_OP(_contrib_boolean_mask) |
| .add_alias("_npi_boolean_mask") |
| .describe(R"code( |
| Given an n-d NDArray data, and a 1-d NDArray index, |
| the operator produces an un-predeterminable shaped n-d NDArray out, |
| which stands for the rows in x where the corresonding element in index is non-zero. |
| |
| >>> data = mx.nd.array([[1, 2, 3],[4, 5, 6],[7, 8, 9]]) |
| >>> index = mx.nd.array([0, 1, 0]) |
| >>> out = mx.nd.contrib.boolean_mask(data, index) |
| >>> out |
| |
| [[4. 5. 6.]] |
| <NDArray 1x3 @cpu(0)> |
| |
| )code" ADD_FILELINE) |
| .set_attr_parser(ParamParser<BooleanMaskParam>) |
| .set_num_inputs(2) |
| .set_num_outputs(1) |
| .set_attr<nnvm::FListInputNames>("FListInputNames", |
| [](const NodeAttrs& attrs) { |
| return std::vector<std::string>{"data", "index"}; |
| }) |
| .set_attr<nnvm::FInferType>("FInferType", BooleanMaskType) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", BooleanMaskForward<cpu>) |
| .set_attr<FInferStorageType>("FInferStorageType", BooleanMaskStorageType) |
| .set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_contrib_boolean_mask"}) |
| .add_argument("data", "NDArray-or-Symbol", "Data") |
| .add_argument("index", "NDArray-or-Symbol", "Mask") |
| .add_arguments(BooleanMaskParam::__FIELDS__()); |
| |
| NNVM_REGISTER_OP(_backward_contrib_boolean_mask) |
| .set_num_inputs(3) |
| .set_num_outputs(2) |
| .set_attr<nnvm::TIsBackward>("TIsBackward", true) |
| .set_attr<FInferStorageType>("FInferStorageType", BooleanMaskBackStorageType) |
| .set_attr<FComputeEx>("FComputeEx<cpu>", BooleanMaskBackward<cpu>) |
| .add_arguments(BooleanMaskParam::__FIELDS__()); |
| |
| } // namespace op |
| } // namespace mxnet |