blob: 7a8bf2a476e3e617569fa48e5942615821e1674c [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file all_finite.cc
* \brief operator for checking if a group of array is all finite
* \author Clement Fuji Tsang
*/
#include "./all_finite-inl.h"
#include <cmath>
namespace mxnet {
namespace op {
template <typename DType>
struct AllFiniteCPUKernel {
MSHADOW_XINLINE static void Map(int i, const DType* in, float* out) {
bool is_finite = true;
is_finite = std::isfinite(static_cast<float>(in[i])) ? is_finite : false;
if (!is_finite) {
out[0] = 0.;
}
}
};
inline void AllFiniteCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
Stream<cpu>* s = ctx.get_stream<cpu>();
const AllFiniteParam& op_param = nnvm::get<AllFiniteParam>(attrs.parsed);
Tensor<cpu, 2, float> out = outputs[0].FlatTo2D<cpu, float>(s);
if (op_param.init_output) {
out = 1.;
}
MSHADOW_REAL_TYPE_SWITCH(inputs[0].type_flag_, DType, {
Tensor<cpu, 2, DType> in = inputs[0].FlatTo2D<cpu, DType>(s);
const int n = in.shape_.Size();
Kernel<AllFiniteCPUKernel<DType>, cpu>::Launch(s, n, in.dptr_, out.dptr_);
});
}
template <typename DType>
struct MultiAllFiniteCPUKernel {
MSHADOW_XINLINE static void Map(int i, const MultiAllFiniteKernelParam<DType> param, float* out) {
bool is_finite = true;
for (int index = 0; index < param.count; ++index) {
if ((size_t)i < param.sizes[index]) {
is_finite = std::isfinite(static_cast<float>(param.arrays[index][i])) ? is_finite : false;
}
}
if (!is_finite) {
out[0] = 0.;
}
}
};
inline void MultiAllFiniteCPU(const nnvm::NodeAttrs& attrs,
const OpContext& ctx,
const std::vector<TBlob>& inputs,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& outputs) {
using namespace mxnet_op;
Stream<cpu>* s = ctx.get_stream<cpu>();
const MultiAllFiniteParam& op_param = nnvm::get<MultiAllFiniteParam>(attrs.parsed);
Tensor<cpu, 2, float> out = outputs[0].FlatTo2D<cpu, float>(s);
if (op_param.init_output)
out = 1.;
MSHADOW_REAL_TYPE_SWITCH(inputs[0].type_flag_, DType, {
MultiAllFiniteKernelParam<DType> param =
FillMultiAllFiniteParam<cpu, DType>(op_param, ctx, inputs);
Kernel<MultiAllFiniteCPUKernel<DType>, cpu>::Launch(s, param.max_size, param, out.dptr_);
});
}
DMLC_REGISTER_PARAMETER(AllFiniteParam);
NNVM_REGISTER_OP(all_finite)
.add_alias("_npi_all_finite")
.describe(R"code(Check if all the float numbers in the array are finite (used for AMP)
)code" ADD_FILELINE)
.set_num_inputs(1)
.set_num_outputs(1)
.set_attr_parser(ParamParser<AllFiniteParam>)
.set_attr<mxnet::FInferShape>("FInferShape",
[](const nnvm::NodeAttrs& attrs,
std::vector<TShape>* in_attrs,
std::vector<TShape>* out_attrs) {
(*out_attrs)[0] = TShape({1});
return true;
})
.set_attr<nnvm::FInferType>("FInferType",
[](const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
(*out_attrs)[0] = mshadow::kFloat32;
return true;
})
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
std::vector<std::string> ret;
ret.emplace_back("data");
return ret;
})
.add_argument("data", "NDArray", "Array")
.add_arguments(AllFiniteParam::__FIELDS__())
.set_attr<FCompute>("FCompute<cpu>", AllFiniteCPU);
DMLC_REGISTER_PARAMETER(MultiAllFiniteParam);
NNVM_REGISTER_OP(multi_all_finite)
.add_alias("_npi_multi_all_finite")
.describe(R"code(Check if all the float numbers in all the arrays are finite (used for AMP)
)code" ADD_FILELINE)
.set_num_inputs([](const nnvm::NodeAttrs& attrs) {
const MultiAllFiniteParam& param = dmlc::get<MultiAllFiniteParam>(attrs.parsed);
return static_cast<uint32_t>(param.num_arrays);
})
.set_num_outputs(1)
.set_attr_parser(ParamParser<MultiAllFiniteParam>)
.set_attr<mxnet::FInferShape>("FInferShape",
[](const nnvm::NodeAttrs& attrs,
std::vector<TShape>* in_attrs,
std::vector<TShape>* out_attrs) {
(*out_attrs)[0] = TShape({1});
return true;
})
.set_attr<nnvm::FInferType>("FInferType",
[](const nnvm::NodeAttrs& attrs,
std::vector<int>* in_attrs,
std::vector<int>* out_attrs) {
(*out_attrs)[0] = mshadow::kFloat32;
return true;
})
.set_attr<nnvm::FListInputNames>("FListInputNames",
[](const NodeAttrs& attrs) {
uint32_t num_args =
dmlc::get<MultiAllFiniteParam>(attrs.parsed).num_arrays;
std::vector<std::string> ret;
for (uint32_t i = 0; i < num_args; ++i) {
ret.push_back(std::string("array_") + std::to_string(i));
}
return ret;
})
.add_argument("data", "NDArray-or-Symbol[]", "Arrays")
.add_arguments(MultiAllFiniteParam::__FIELDS__())
.set_attr<FCompute>("FCompute<cpu>", MultiAllFiniteCPU);
} // namespace op
} // namespace mxnet