| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| * \file npx_convolution_op.cc |
| * \brief Implementation of the API of functions in |
| * src/operator/numpy_extension/npx_convolution_op.cc |
| */ |
| #include <mxnet/api_registry.h> |
| #include <mxnet/runtime/packed_func.h> |
| #include "../utils.h" |
| #include "../../../operator/nn/convolution-inl.h" |
| |
| namespace mxnet { |
| |
| inline int String2Layout(const std::string& s) { |
| using namespace op; |
| if (s == "NCW") { |
| return mshadow::kNCW; |
| } else if (s == "NCHW") { |
| return mshadow::kNCHW; |
| } else if (s == "NCDHW") { |
| return mshadow::kNCDHW; |
| } else if (s == "NHWC") { |
| return mshadow::kNHWC; |
| } else if (s == "NDHWC") { |
| return mshadow::kNDHWC; |
| } else { |
| LOG(FATAL) << "unknown layout type " << s; |
| } |
| LOG(FATAL) << "should not reach here "; |
| return 0; |
| } |
| |
| inline int String2CudnnTune(const std::string& s) { |
| using namespace op; |
| if (s == "off") { |
| return conv::kOff; |
| } else if (s == "limited_workspace") { |
| return conv::kLimited; |
| } else if (s == "fastest") { |
| return conv::kFastest; |
| } else { |
| LOG(FATAL) << "unknown cudnn tune type " << s; |
| } |
| LOG(FATAL) << "should not reach here "; |
| return 0; |
| } |
| |
| MXNET_REGISTER_API("_npx.convolution") |
| .set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) { |
| using namespace runtime; |
| nnvm::NodeAttrs attrs; |
| const nnvm::Op* op = Op::Get("_npx_convolution"); |
| op::ConvolutionParam param = {}; |
| int args_size = args.size(); |
| // no_bias |
| if (args[args_size - 4].type_code() == kNull) { |
| param.no_bias = false; |
| } else { |
| param.no_bias = args[args_size - 4].operator bool(); |
| } |
| // inputs |
| int num_inputs = param.no_bias ? 2 : 3; |
| std::vector<NDArray*> inputs; |
| inputs.reserve(num_inputs); |
| for (int i = 0; i < num_inputs; ++i) { |
| inputs.push_back(args[i].operator mxnet::NDArray*()); |
| } |
| // kernel |
| if (args[num_inputs].type_code() == kDLInt) { |
| param.kernel = TShape(1, args[num_inputs].operator int64_t()); |
| } else { |
| param.kernel = TShape(args[num_inputs].operator ObjectRef()); |
| } |
| // layout |
| if (args[num_inputs + 10].type_code() == kNull) { |
| param.layout = dmlc::nullopt; |
| } else { |
| param.layout = String2Layout(args[num_inputs + 10]); |
| } |
| // Check |
| if (param.kernel.ndim() == 1) { |
| param.layout = param.layout ? param.layout.value() : mshadow::kNCW; |
| } else if (param.kernel.ndim() == 2) { |
| param.layout = param.layout ? param.layout.value() : mshadow::kNCHW; |
| } else { |
| CHECK_EQ(param.kernel.ndim(), 3U) << param.kernel.ndim() << "D convolution not supported"; |
| param.layout = param.layout ? param.layout.value() : mshadow::kNCDHW; |
| } |
| // stride |
| if (args[num_inputs + 1].type_code() == kNull) { |
| if (param.kernel.ndim() == 1) { |
| param.stride = Shape1(1); |
| } else if (param.kernel.ndim() == 2) { |
| param.stride = Shape2(1, 1); |
| } else { |
| param.stride = Shape3(1, 1, 1); |
| } |
| } else if (args[num_inputs + 1].type_code() == kDLInt) { |
| param.stride = TShape(1, args[num_inputs + 1].operator int64_t()); |
| } else { |
| param.stride = TShape(args[num_inputs + 1].operator ObjectRef()); |
| } |
| // dilate |
| if (args[num_inputs + 2].type_code() == kNull) { |
| if (param.kernel.ndim() == 1) { |
| param.dilate = Shape1(1); |
| } else if (param.kernel.ndim() == 2) { |
| param.dilate = Shape2(1, 1); |
| } else { |
| param.dilate = Shape3(1, 1, 1); |
| } |
| } else if (args[num_inputs + 2].type_code() == kDLInt) { |
| param.dilate = TShape(1, args[num_inputs + 2].operator int64_t()); |
| } else { |
| param.dilate = TShape(args[num_inputs + 2].operator ObjectRef()); |
| } |
| // pad |
| if (args[num_inputs + 3].type_code() == kNull) { |
| if (param.kernel.ndim() == 1) { |
| param.pad = Shape1(0); |
| } else if (param.kernel.ndim() == 2) { |
| param.pad = Shape2(0, 0); |
| } else { |
| param.pad = Shape3(0, 0, 0); |
| } |
| } else if (args[num_inputs + 3].type_code() == kDLInt) { |
| param.pad = TShape(1, args[num_inputs + 3].operator int64_t()); |
| } else { |
| param.pad = TShape(args[num_inputs + 3].operator ObjectRef()); |
| } |
| // num_filter |
| param.num_filter = (uint32_t)(args[num_inputs + 4].operator int()); |
| // num_group |
| param.num_group = (uint32_t)(args[num_inputs + 5].operator int()); |
| // workspace |
| param.workspace = args[num_inputs + 6].operator int64_t(); |
| // cudnn_tune |
| if (args[num_inputs + 8].type_code() == kNull) { |
| param.cudnn_tune = dmlc::nullopt; |
| } else { |
| param.cudnn_tune = String2CudnnTune(args[num_inputs + 8]); |
| } |
| // cudnn_off |
| if (args[num_inputs + 9].type_code() == kNull) { |
| param.cudnn_off = false; |
| } else { |
| param.cudnn_off = args[num_inputs + 9].operator bool(); |
| } |
| |
| CHECK_EQ(param.kernel.ndim(), param.stride.ndim()) |
| << "Stride must have the same number of dimensions with kernel_size," |
| << "but kernel_size is set to " << param.kernel << " while stride is " << param.stride; |
| CHECK_EQ(param.kernel.ndim(), param.dilate.ndim()) |
| << "Dilate must have the same number of dimensions with kernel_size," |
| << "but kernel_size is set to " << param.kernel << " while dilate is " << param.dilate; |
| CHECK_EQ(param.kernel.ndim(), param.pad.ndim()) |
| << "Padding must have the same number of dimensions with kernel_size," |
| << "but kernel_size is set to " << param.kernel << " while padding is " << param.pad; |
| |
| attrs.parsed = param; |
| attrs.op = op; |
| SetAttrDict<op::ConvolutionParam>(&attrs); |
| int num_outputs = 0; |
| auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs.data(), &num_outputs, nullptr); |
| *ret = ndoutputs[0]; |
| }); |
| |
| } // namespace mxnet |