blob: eee811dd508d37f0137d153ad6443b0c620d5873 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_exponential_op.cc
* \brief Implementation of the API of functions in src/operator/numpy/random/np_exponential_op.h
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../../utils.h"
#include "../../../../operator/numpy/random/np_exponential_op.h"
namespace mxnet {
MXNET_REGISTER_API("_npi.exponential")
.set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_exponential");
op::NumpyExponentialParam param = {};
nnvm::NodeAttrs attrs;
attrs.op = op;
if (args[1].type_code() == kDLInt) {
param.size = Tuple<index_t>(1, args[1].operator int64_t());
} else if (args[1].type_code() == kNull) {
param.size = dmlc::nullopt;
} else {
param.size = Tuple<index_t>(args[1].operator ObjectRef());
}
if (args[2].type_code() != kNull) {
attrs.dict["ctx"] = args[2].operator std::string();
}
NDArray* out = args[3].operator mxnet::NDArray*();
NDArray** outputs = out == nullptr ? nullptr : &out;
int num_outputs = out != nullptr;
NDArray* inputs[1];
int num_inputs = 0;
if (args[0].type_code() == kDLFloat || args[0].type_code() == kDLInt) {
param.scale = args[0].operator double();
num_inputs = 0;
} else {
param.scale = dmlc::nullopt;
inputs[0] = args[0].operator mxnet::NDArray*();
num_inputs = 1;
}
attrs.parsed = param;
SetAttrDict<op::NumpyExponentialParam>(&attrs);
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, outputs);
if (out) {
*ret = PythonArg(3);
} else {
*ret = ndoutputs[0];
}
});
} // namespace mxnet