blob: df46ee517bac34052706f7eb05be9959e865ee48 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_where_op.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_where_op.cc
*/
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../utils.h"
#include "../../../operator/numpy/np_where_op-inl.h"
namespace mxnet {
inline static bool isScalar(const runtime::MXNetArgValue& arg) {
return arg.type_code() == kDLInt || arg.type_code() == kDLUInt || arg.type_code() == kDLFloat;
}
inline static void _npi_where(runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_where");
nnvm::NodeAttrs attrs;
attrs.op = op;
int num_inputs = 3;
int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*(),
args[1].operator mxnet::NDArray*(),
args[2].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
}
inline static void _npi_where_scalar1(runtime::MXNetArgs args,
runtime::MXNetRetValue* ret,
bool isl) {
using namespace runtime;
nnvm::NodeAttrs attrs;
const nnvm::Op* op = isl ? Op::Get("_npi_where_lscalar") : Op::Get("_npi_where_rscalar");
op::NumpyWhereScalarParam param = {};
param.scalar = isl ? args[1].operator double() : args[2].operator double();
attrs.op = op;
attrs.parsed = param;
SetAttrDict<op::NumpyWhereScalarParam>(&attrs);
int num_inputs = 2;
int num_outputs = 0;
NDArray* inputs[] = {
args[0].operator mxnet::NDArray*(),
isl ? args[2].operator mxnet::NDArray*() : args[1].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
}
inline static void _npi_where_scalar2(runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_where_scalar2");
op::NumpyWhereScalar2Param param = {};
nnvm::NodeAttrs attrs;
param.x = args[1].operator double();
param.y = args[2].operator double();
attrs.op = op;
attrs.parsed = param;
SetAttrDict<op::NumpyWhereScalar2Param>(&attrs);
int num_inputs = 1;
int num_outputs = 0;
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
}
MXNET_REGISTER_API("_npi.where").set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
if (isScalar(args[1]) && isScalar(args[2])) {
_npi_where_scalar2(args, ret);
} else if (!isScalar(args[1]) && !isScalar(args[2])) {
_npi_where(args, ret);
} else {
_npi_where_scalar1(args, ret, isScalar(args[1]));
}
});
} // namespace mxnet