blob: 67171ed32abda89c2d4e6ef595521a967d6ce831 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file np_pad_op.cc
* \brief Implementation of the API of functions in src/operator/numpy/np_pad_op.cc
*/
#include <dmlc/optional.h>
#include <mxnet/api_registry.h>
#include <mxnet/runtime/packed_func.h>
#include "../utils.h"
#include "../../../operator/numpy/np_pad_op-inl.h"
namespace mxnet {
inline int String2MXNetPadType(const std::string& s) {
using namespace op;
if (s == "constant") {
return pad_enum::kConstant;
} else if (s == "edge") {
return pad_enum::kEdge;
} else if (s == "reflect") {
return pad_enum::kReflect;
} else if (s == "symmetric") {
return pad_enum::kSymmetric;
} else if (s == "maximum") {
return pad_enum::kMaximum;
} else if (s == "minimum") {
return pad_enum::kMinimum;
} else {
LOG(FATAL) << "unknown type " << s;
}
LOG(FATAL) << "should not reach here ";
return 0;
}
inline Tuple<Tuple<int>> BroadcastPadWidth(int ndim, runtime::ADT adt) {
std::vector<mxnet::Tuple<int>> temp;
int adt_size = adt.size();
if (const runtime::IntegerObj* pad = adt[0].as<runtime::IntegerObj>()) {
if (adt_size == 1) {
int pad_width = static_cast<int>(pad->value);
if (ndim == 1) {
temp.emplace_back(mxnet::Tuple<int>({pad_width}));
temp.emplace_back(mxnet::Tuple<int>({pad_width}));
} else {
for (int dim = 0; dim < ndim; dim++) {
temp.emplace_back(mxnet::Tuple<int>({pad_width, pad_width}));
}
}
} else {
CHECK_EQ(adt_size, 2) << "Invalid Input pad_width";
int pad_before = static_cast<int>(pad->value);
int pad_after = static_cast<int>(Downcast<runtime::Integer, ObjectRef>(adt[1])->value);
if (ndim == 1) {
temp.emplace_back(mxnet::Tuple<int>({pad_before}));
temp.emplace_back(mxnet::Tuple<int>({pad_after}));
} else {
for (int dim = 0; dim < ndim; dim++) {
temp.emplace_back(mxnet::Tuple<int>({pad_before, pad_after}));
}
}
}
} else {
if (adt_size == 1) {
if (ndim == 1) {
runtime::ADT pad_adt = Downcast<runtime::ADT, ObjectRef>(adt[0]);
int pad_before = static_cast<int>(Downcast<runtime::Integer, ObjectRef>(pad_adt[0])->value);
int pad_after = static_cast<int>(Downcast<runtime::Integer, ObjectRef>(pad_adt[1])->value);
temp.emplace_back(mxnet::Tuple<int>({pad_before}));
temp.emplace_back(mxnet::Tuple<int>({pad_after}));
} else {
for (int dim = 0; dim < ndim; dim++) {
temp.emplace_back(mxnet::Tuple<int>(adt[0]));
}
}
} else {
CHECK_EQ(adt_size, ndim) << "Invalid Input pad_width";
for (int dim = 0; dim < ndim; dim++) {
temp.emplace_back(mxnet::Tuple<int>(adt[dim]));
}
}
}
return Tuple<Tuple<int>>(temp.begin(), temp.end());
}
MXNET_REGISTER_API("_npi.pad").set_body([](runtime::MXNetArgs args, runtime::MXNetRetValue* ret) {
using namespace runtime;
const nnvm::Op* op = Op::Get("_npi_pad");
nnvm::NodeAttrs attrs;
op::NumpyPadParam param = {};
NDArray* inputs[] = {args[0].operator mxnet::NDArray*()};
mxnet::TShape ashape = inputs[0]->shape();
int ndim = ashape.ndim();
ADT adt = Downcast<ADT, ObjectRef>(args[1].operator ObjectRef());
// broadcast pad_width to (ndim, 2)
param.pad_width = BroadcastPadWidth(ndim, adt);
param.mode = String2MXNetPadType(args[2].operator std::string());
if (args[3].type_code() != kNull) {
param.constant_values = args[3].operator double();
}
if (args[4].type_code() != kNull) {
param.reflect_type = args[4].operator std::string();
}
attrs.op = op;
attrs.parsed = param;
SetAttrDict<op::NumpyPadParam>(&attrs);
int num_inputs = 1;
int num_outputs = 0;
auto ndoutputs = Invoke(op, &attrs, num_inputs, inputs, &num_outputs, nullptr);
*ret = reinterpret_cast<mxnet::NDArray*>(ndoutputs[0]);
});
} // namespace mxnet