| /* |
| * Licensed to the Apache Software Foundation (ASF) under one |
| * or more contributor license agreements. See the NOTICE file |
| * distributed with this work for additional information |
| * regarding copyright ownership. The ASF licenses this file |
| * to you under the Apache License, Version 2.0 (the |
| * "License"); you may not use this file except in compliance |
| * with the License. You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, |
| * software distributed under the License is distributed on an |
| * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| * KIND, either express or implied. See the License for the |
| * specific language governing permissions and limitations |
| * under the License. |
| */ |
| |
| /*! |
| */ |
| #include <iostream> |
| #include <fstream> |
| #include <map> |
| #include <string> |
| #include <vector> |
| #include "mxnet-cpp/MxNetCpp.h" |
| using namespace std; |
| using namespace mxnet::cpp; |
| |
| /* |
| * This example shows how to extract features with a pretrained model. |
| * Get the model here: |
| * https://github.com/dmlc/mxnet-model-gallery |
| * */ |
| |
| /*The global context, change them if necessary*/ |
| Context global_ctx(kGPU, 0); |
| // Context global_ctx(kCPU,0); |
| |
| class FeatureExtractor { |
| private: |
| /*the mean image, get from the pretrained model*/ |
| NDArray mean_img; |
| /*the following two maps store all the paramters need by the model*/ |
| map<string, NDArray> args_map; |
| map<string, NDArray> aux_map; |
| Symbol net; |
| Executor *executor; |
| /*Get the feature layer we want to extract*/ |
| void GetFeatureSymbol() { |
| /* |
| * use the following to check all the layers' names: |
| * */ |
| /* |
| net=Symbol::Load("./model/Inception_BN-symbol.json").GetInternals(); |
| for(const auto & layer_name:net.ListOutputs()){ |
| LG<<layer_name; |
| } |
| */ |
| net = Symbol::Load("./model/Inception-BN-symbol.json") |
| .GetInternals()["global_pool_output"]; |
| } |
| /*Fill the trained paramters into the model, a.k.a. net, executor*/ |
| void LoadParameters() { |
| map<string, NDArray> paramters; |
| NDArray::Load("./model/Inception-BN-0126.params", 0, ¶mters); |
| for (const auto &k : paramters) { |
| if (k.first.substr(0, 4) == "aux:") { |
| auto name = k.first.substr(4, k.first.size() - 4); |
| aux_map[name] = k.second.Copy(global_ctx); |
| } |
| if (k.first.substr(0, 4) == "arg:") { |
| auto name = k.first.substr(4, k.first.size() - 4); |
| args_map[name] = k.second.Copy(global_ctx); |
| } |
| } |
| /*WaitAll is need when we copy data between GPU and the main memory*/ |
| NDArray::WaitAll(); |
| } |
| void GetMeanImg() { |
| mean_img = NDArray(Shape(1, 3, 224, 224), global_ctx, false); |
| mean_img.SyncCopyFromCPU( |
| NDArray::LoadToMap("./model/mean_224.nd")["mean_img"].GetData(), |
| 1 * 3 * 224 * 224); |
| NDArray::WaitAll(); |
| } |
| |
| public: |
| FeatureExtractor() { |
| /*prepare the model, fill the pretrained parameters, get the mean image*/ |
| GetFeatureSymbol(); |
| LoadParameters(); |
| GetMeanImg(); |
| } |
| |
| void Extract(NDArray data) { |
| /*Normalize the pictures*/ |
| data.Slice(0, 1) -= mean_img; |
| data.Slice(1, 2) -= mean_img; |
| args_map["data"] = data; |
| /*bind the executor*/ |
| executor = net.SimpleBind(global_ctx, args_map, map<string, NDArray>(), |
| map<string, OpReqType>(), aux_map); |
| executor->Forward(false); |
| /*print out the features*/ |
| auto array = executor->outputs[0].Copy(Context(kCPU, 0)); |
| NDArray::WaitAll(); |
| array = array.Reshape({2, 1024}); |
| for (int i = 0; i < 1024; ++i) { |
| cout << array.At(0, i) << ","; |
| } |
| cout << endl; |
| } |
| }; |
| |
| NDArray Data2NDArray() { |
| NDArray ret(Shape(2, 3, 224, 224), global_ctx, false); |
| ifstream inf("./img.dat", ios::binary); |
| vector<float> data(2 * 3 * 224 * 224); |
| inf.read(reinterpret_cast<char *>(data.data()), 2 * 3 * 224 * 224 * sizeof(float)); |
| inf.close(); |
| ret.SyncCopyFromCPU(data.data(), 2 * 3 * 224 * 224); |
| NDArray::WaitAll(); |
| return ret; |
| } |
| |
| int main() { |
| /* |
| * get the data from a binary file ./img.data |
| * this file is generated by ./prepare_data_with_opencv |
| * it stores 2 pictures in NDArray format |
| * |
| */ |
| auto data = Data2NDArray(); |
| FeatureExtractor fe; |
| fe.Extract(data); |
| return 0; |
| } |