blob: d614fd576238cb1a5a57d9301cdbaa7358a67696 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
*/
#include <iostream>
#include <fstream>
#include <map>
#include <string>
#include <vector>
#include "mxnet-cpp/MxNetCpp.h"
using namespace std;
using namespace mxnet::cpp;
/*
* This example shows how to extract features with a pretrained model.
* Get the model here:
* https://github.com/dmlc/mxnet-model-gallery
* */
/*The global context, change them if necessary*/
Context global_ctx(kGPU, 0);
// Context global_ctx(kCPU,0);
class FeatureExtractor {
private:
/*the mean image, get from the pretrained model*/
NDArray mean_img;
/*the following two maps store all the paramters need by the model*/
map<string, NDArray> args_map;
map<string, NDArray> aux_map;
Symbol net;
Executor *executor;
/*Get the feature layer we want to extract*/
void GetFeatureSymbol() {
/*
* use the following to check all the layers' names:
* */
/*
net=Symbol::Load("./model/Inception_BN-symbol.json").GetInternals();
for(const auto & layer_name:net.ListOutputs()){
LG<<layer_name;
}
*/
net = Symbol::Load("./model/Inception-BN-symbol.json")
.GetInternals()["global_pool_output"];
}
/*Fill the trained paramters into the model, a.k.a. net, executor*/
void LoadParameters() {
map<string, NDArray> paramters;
NDArray::Load("./model/Inception-BN-0126.params", 0, &paramters);
for (const auto &k : paramters) {
if (k.first.substr(0, 4) == "aux:") {
auto name = k.first.substr(4, k.first.size() - 4);
aux_map[name] = k.second.Copy(global_ctx);
}
if (k.first.substr(0, 4) == "arg:") {
auto name = k.first.substr(4, k.first.size() - 4);
args_map[name] = k.second.Copy(global_ctx);
}
}
/*WaitAll is need when we copy data between GPU and the main memory*/
NDArray::WaitAll();
}
void GetMeanImg() {
mean_img = NDArray(Shape(1, 3, 224, 224), global_ctx, false);
mean_img.SyncCopyFromCPU(
NDArray::LoadToMap("./model/mean_224.nd")["mean_img"].GetData(),
1 * 3 * 224 * 224);
NDArray::WaitAll();
}
public:
FeatureExtractor() {
/*prepare the model, fill the pretrained parameters, get the mean image*/
GetFeatureSymbol();
LoadParameters();
GetMeanImg();
}
void Extract(NDArray data) {
/*Normalize the pictures*/
data.Slice(0, 1) -= mean_img;
data.Slice(1, 2) -= mean_img;
args_map["data"] = data;
/*bind the executor*/
executor = net.SimpleBind(global_ctx, args_map, map<string, NDArray>(),
map<string, OpReqType>(), aux_map);
executor->Forward(false);
/*print out the features*/
auto array = executor->outputs[0].Copy(Context(kCPU, 0));
NDArray::WaitAll();
array = array.Reshape({2, 1024});
for (int i = 0; i < 1024; ++i) {
cout << array.At(0, i) << ",";
}
cout << endl;
}
};
NDArray Data2NDArray() {
NDArray ret(Shape(2, 3, 224, 224), global_ctx, false);
ifstream inf("./img.dat", ios::binary);
vector<float> data(2 * 3 * 224 * 224);
inf.read(reinterpret_cast<char *>(data.data()), 2 * 3 * 224 * 224 * sizeof(float));
inf.close();
ret.SyncCopyFromCPU(data.data(), 2 * 3 * 224 * 224);
NDArray::WaitAll();
return ret;
}
int main() {
/*
* get the data from a binary file ./img.data
* this file is generated by ./prepare_data_with_opencv
* it stores 2 pictures in NDArray format
*
*/
auto data = Data2NDArray();
FeatureExtractor fe;
fe.Extract(data);
return 0;
}