| # Licensed to the Apache Software Foundation (ASF) under one |
| # or more contributor license agreements. See the NOTICE file |
| # distributed with this work for additional information |
| # regarding copyright ownership. The ASF licenses this file |
| # to you under the Apache License, Version 2.0 (the |
| # "License"); you may not use this file except in compliance |
| # with the License. You may obtain a copy of the License at |
| # |
| # http://www.apache.org/licenses/LICENSE-2.0 |
| # |
| # Unless required by applicable law or agreed to in writing, |
| # software distributed under the License is distributed on an |
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY |
| # KIND, either express or implied. See the License for the |
| # specific language governing permissions and limitations |
| # under the License. |
| import sys |
| |
| # We will use all operators inside NDArray Module |
| # If you want to run benchmark for all operators in different namespace, |
| # for example mxnet.numpy.op, update here. All operators for benchmarks |
| # will be picked up from this module |
| MX_OP_MODULE = sys.modules["mxnet.ndarray.op"] |
| |
| |
| """Default Input Tensor shapes to use for benchmarking""" |
| |
| # For operators like concat, ElementWiseSum, squeeze, stack |
| # argument data is passed as variable arg (*args) |
| DEFAULT_ARGS = [(1024, 1024)] |
| |
| # For Unary operators like abs, arccos, arcsin etc.. |
| DEFAULT_DATA = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_DTYPE = ['float32', 'int32', 'float32'] # required parameter for amp_cast, cast |
| DEFAULT_DTYPE_INT = ['int32', 'int64', 'int32'] # randint works for int* types only |
| DEFAULT_DTYPE_FLOAT = ['float16', 'float32', 'float64'] # random_exp works for float* types only |
| |
| DEFAULT_DATA_LARGE_TENSOR = [(2**16, 2**16)] |
| |
| # For Binary miscellaneous operators like choose_element0_index |
| # argument data must be indexed via an NDArray. |
| # NOTE: Data used is DEFAULT_DATA |
| DEFAULT_INDEX = [(1, 1024), (1, 1), (1, 100)] |
| |
| DEFAULT_INDEX_LARGE_TENSOR = [(1, 2**16)] |
| |
| # For Binary broadcast operators like - broadcast_add/sub/mod/logical_and etc.. |
| DEFAULT_LHS = [(1024, 1024), (10000, 10), (10000, 1)] |
| DEFAULT_RHS = [(1024, 1024), (10000, 10), (10000, 1)] |
| |
| DEFAULT_LHS_LARGE_TENSOR = [(2**16, 2**16), (2**28, 2**4), (2**32, 1)] |
| DEFAULT_RHS_LARGE_TENSOR = [(2**16, 2**16), (2**28, 2**4), (2**32, 1)] |
| |
| # For operators like - random_uniform, random_normal etc.. |
| DEFAULT_SHAPE = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_SAMPLE = [(2,)] |
| DEFAULT_LOW = [0] |
| DEFAULT_HIGH = [5] |
| DEFAULT_K = [1] |
| DEFAULT_P = [1] |
| |
| DEFAULT_SHAPE_LARGE_TENSOR = [(2**16, 2**16)]#, (2**32, 1), (2**25, 2**7)] |
| DEFAULT_SAMPLE_LARGE_TENSOR = [(2**32,)] |
| DEFAULT_DATA_RPD_LARGE_TENSOR = [(2**32 + 1, 5)] |
| DEFAULT_ALPHA_RPD_LARGE_TENSOR = [(2**32,)] |
| DEFAULT_SAMPLE_RPE_LARGE_TENSOR = [(1, 2**32)] |
| DEFAULT_LAM_RPE_LARGE_TENSOR = [(1,)] |
| DEFAULT_SAMPLE_RPG_LARGE_TENSOR = [(1, 2**32 + 1)] |
| DEFAULT_ALPHA_RPG_LARGE_TENSOR = [(1,)] |
| |
| # For operators like - sample_uniform, sample_normal etc.. |
| # NOTE: There are many overlapping operators in random_* and sample_*, |
| # Ex: random_uniform, sample_uniform. Parameter names are same, but, for |
| # random_* operators they are float/int and for sample_* operators they are NDArray. |
| # Hence, below we append ND to mark the difference. |
| DEFAULT_LOW_ND = [[0.0, 2.5]] |
| DEFAULT_HIGH_ND = [[1.0, 3.7]] |
| DEFAULT_MU_ND = [[2.0, 2.5]] |
| DEFAULT_SIGMA = [[1.0, 3.7]] |
| DEFAULT_ALPHA_ND = [[0.0, 2.5]] |
| DEFAULT_BETA_ND = [[1.0, 0.7]] |
| DEFAULT_LAM = [[1.0, 8.5]] |
| DEFAULT_K_ND = [[20, 49]] |
| DEFAULT_P_ND = [[0.4, 0.77]] |
| DEFAULT_GRID = [(32, 2, 256, 256)] |
| DEFAULT_DATA_BILINEAR = [(32, 2, 256, 256)] |
| DEFAULT_TRANSFORM_TYPE = ['warp', 'affine'] |
| DEFAULT_DATA_GRIDGEN = [(32, 2, 256, 256), (256, 6)] |
| DEFAULT_TARGET_SHAPE = [(256, 6)] |
| DEFAULT_DATA_SM = [(32, 32), (64, 64)] |
| |
| DEFAULT_LOW_ND_LARGE_TENSOR = [[0.0] * 2**16 + [2.5] * 2**16] |
| DEFAULT_HIGH_ND_LARGE_TENSOR = [[1.0] * 2**16 + [3.7] * 2**16] |
| DEFAULT_MU_ND_LARGE_TENSOR = [[2.0] * 2**16 + [2.5] * 2**16] |
| DEFAULT_SIGMA_LARGE_TENSOR = [[1.0] * 2**16 + [3.7] * 2**16] |
| DEFAULT_ALPHA_ND_LARGE_TENSOR = [[0.0] * 2**16 + [2.5] * 2**16] |
| DEFAULT_BETA_ND_LARGE_TENSOR = [[1.0] * 2**16 + [0.7] * 2**16] |
| DEFAULT_LAM_ND_LARGE_TENSOR = [[1.0] * 2**16 + [8.5] * 2**16] |
| DEFAULT_K_ND_LARGE_TENSOR = [[20] * 2**16 + [49] * 2**16] |
| DEFAULT_P_ND_LARGE_TENSOR = [[0.4] * 2**16 + [0.77] * 2**16] |
| DEFAULT_DATA_BILINEAR_LARGE_TENSOR = [(2**32, 1, 1, 1)] |
| DEFAULT_GRID_LARGE_TENSOR = [(2**32, 2, 1, 1)] |
| DEFAULT_DATA_GRIDGEN_LARGE_TENSOR = [(2**31, 2, 1, 1), (1, 6)] |
| DEFAULT_TARGET_SHAPE_LARGE_TENSOR = [(1, 6)] |
| DEFAULT_DATA_SM_LARGE_TENSOR = [(2**32,)] |
| DEFAULT_SHAPE_SE_LARGE_TENSOR = [(1,)] |
| DEFAULT_LAM_SE_LARGE_TENSOR = [(2**32 + 1,)] |
| DEFAULT_SHAPE_SU_LARGE_TENSOR = [(2**32,)] |
| |
| # For sorting and searching operators |
| # NOTE: Data used is DEFAULT_DATA |
| DEFAULT_AXIS = [0] |
| |
| # For NN basic operators |
| # General |
| DEFAULT_DATA_NN_BASIC = [(32, 3, 256, 256), (32, 3, 10000, 10)] |
| DEFAULT_NUM_HIDDEN = [64] |
| DEFAULT_BIAS = [(64,)] |
| DEFAULT_FLATTEN = [True, False] |
| DEFAULT_GAMMA = [(3,)] |
| DEFAULT_BETA = [(3,)] |
| DEFAULT_MOVING_MEAN = [(3,)] |
| DEFAULT_MOVING_VAR = [(3,)] |
| DEFAULT_LABEL_REG = [(32, 3, 256, 256), (32, 3, 10000, 10)] |
| DEFAULT_GRAD_SCALE = [.5] |
| DEFAULT_NORMALIZATION = ["batch"] |
| DEFAULT_MARGIN = [.5] |
| DEFAULT_REG_COEFF = [.5] |
| DEFAULT_INPUT_DIM = [3, 16] |
| DEFAULT_OUTPUT_DIM = [4, 9] |
| DEFAULT_SPARSE_GRAD = [False] |
| DEFAULT_KERNEL_SIZE = [3] |
| DEFAULT_MAX_DISPLACEMENT = [2] |
| DEFAULT_STRIDE_1 = [2] |
| DEFAULT_STRIDE_2 = [2] |
| DEFAULT_ALPHA = [.001] |
| DEFAULT_NSIZE = [3] |
| DEFAULT_PARAMETERS = [(7,), (104,)] |
| DEFAULT_STATE = [(1, 4, 1), (2, 10000, 4)] |
| DEFAULT_STATE_SIZE = [1, 4] |
| DEFAULT_NUM_LAYERS = [1, 2] |
| DEFAULT_NUM_GROUPS = [1, 10] |
| DEFAULT_TRANSFORM = ["affine"] |
| DEFAULT_SAMPLER = ["bilinear"] |
| DEFAULT_DILATE = [(1,), (1, 1)] |
| DEFAULT_PAD = [(1,), (1, 1)] |
| DEFAULT_OUTPUT_SIZE = [(64, 16, 1), (32, 8, 1)] |
| DEFAULT_KERNEL = [(1, 1, 1), (1, 1, 1)] |
| DEFAULT_STRIDE = [(2, 2, 2), (1, 1, 1)] |
| |
| DEFAULT_DATA_NN_BASIC_LARGE_TENSOR = [(2**32 + 1, 1)] |
| DEFAULT_NUM_HIDDEN_LARGE_TENSOR = [(1,)] |
| DEFAULT_BIAS_LARGE_TENSOR = [(1,)] |
| DEFAULT_FLATTEN_LARGE_TENSOR = [False] |
| DEFAULT_GAMMA_LARGE_TENSOR = [(1,)] |
| DEFAULT_BETA_LARGE_TENSOR = [(1,)] |
| DEFAULT_MOVING_MEAN_LARGE_TENSOR = [(2**32 + 1,)] |
| DEFAULT_MOVING_VAR_LARGE_TENSOR = [(2**32 + 1,)] |
| DEFAULT_INPUT_DIM_LARGE_TENSOR = [2**32] |
| DEFAULT_OUTPUT_DIM_LARGE_TENSOR = [1] |
| DEFAULT_KERNEL_SIZE_LARGE_TENSOR = [1] |
| DEFAULT_MAX_DISPLACEMENT_LARGE_TENSOR = [1] |
| DEFAULT_STRIDE_1_LARGE_TENSOR = [1] |
| DEFAULT_STRIDE_2_LARGE_TENSOR = [1] |
| DEFAULT_DILATE_LARGE_TENSOR = [[]] |
| DEFAULT_PAD_LARGE_TENSOR = [[]] |
| DEFAULT_OUTPUT_SIZE_LARGE_TENSOR = [(2, 2, 1)] |
| DEFAULT_KERNEL_LARGE_TENSOR = [(1, 1, 1)] |
| DEFAULT_STRIDE_LARGE_TENSOR = [[]] |
| DEFAULT_PARAMETERS_LARGE_TENSOR = [(7,)] |
| DEFAULT_STATE_LARGE_TENSOR = [(1, 4, 1)] |
| DEFAULT_STATE_SIZE_LARGE_TENSOR = [1] |
| DEFAULT_NUM_LAYERS_LARGE_TENSOR = [1] |
| |
| # BatchNorm |
| DEFAULT_AXIS_BN = [1] |
| |
| # LayerNorm |
| DEFAULT_GAMMA_LN = [(32,), (32,)] |
| DEFAULT_BETA_LN = [(32,), (32,)] |
| |
| # L2Normalization |
| DEFAULT_MODE_L2 = ['channel', 'instance', 'spatial'] |
| |
| DEFAULT_DATA_SVM_LARGE_TENSOR = [(2**29, 2, 2, 2)] |
| |
| DEFAULT_DATA_SO_LARGE_TENSOR = [(2**29, 2, 2, 2)] |
| DEFAULT_LABEL_SO_LARGE_TENSOR = [(2**29, 2, 2)] |
| |
| # FullyConnected |
| DEFAULT_WEIGHT_FC = [(64, 3 * 256 * 256), (64, 10)] |
| |
| DEFAULT_DATA_FC_LARGE_TENSOR = [(2**32, 1)] |
| DEFAULT_WEIGHT_FC_LARGE_TENSOR = [(1, 1)] |
| DEFAULT_NUM_HIDDEN_FC_LARGE_TENSOR = [1] |
| |
| # Embedding |
| DEFAULT_WEIGHT_EMBEDDING = [(3, 4), (16, 9)] |
| |
| DEFAULT_WEIGHT_EMBEDDING_LARGE_TENSOR = [(2**32, 1)] |
| |
| # GroupNorm |
| DEFAULT_DATA_GN = [(32, 3, 256, 256), (32, 10, 10000, 10)] |
| DEFAULT_BETA_GAMMA_GN = [(1,), (10,)] |
| |
| DEFAULT_DATA_GN_LARGE_TENSOR = [(2**27, 4, 4, 2)] |
| DEFAULT_BETA_GAMMA_GN_LARGE_TENSOR = [(1,)] |
| |
| # Dropout |
| DEFAULT_DATA_DROPOUT = [(32, 3, 256, 256), (10000, 10)] |
| DEFAULT_MODE_DROPOUT = ["always"] |
| |
| DEFAULT_DATA_DROPOUT_LARGE_TENSOR = [(2**32 + 1,)] |
| DEFAULT_P_DROPOUT_LARGE_TENSOR = [.5] |
| DEFAULT_AXES_DROPOUT_LARGE_TENSOR = [[]] |
| |
| # SpatialTransformer |
| DEFAULT_DATA_ST = [(32, 3, 256, 6), (256, 3, 10000, 6)] |
| DEFAULT_LOC_TAR_ST = [(32, 6), (256, 6)] |
| |
| DEFAULT_DATA_ST_LARGE_TENSOR = [(2, 2**29, 1, 6)] |
| DEFAULT_LOC_TAR_ST_LARGE_TENSOR = [(2, 6)] |
| |
| # im2col |
| DEFAULT_KERNEL_I2C = [(3,), (3, 3)] |
| DEFAULT_STRIDE_I2C = [(1,), (1, 1)] |
| |
| DEFAULT_DATA_I2C_LARGE_TENSOR = [(2**29, 2, 2, 6)] |
| DEFAULT_KERNEL_I2C_LARGE_TENSOR = [(1,)] |
| DEFAULT_STRIDE_I2C_LARGE_TENSOR = [[]] |
| |
| # col2im |
| DEFAULT_DATA_C2I = [(32, 64, 256), (32, 64, 256)] |
| |
| DEFAULT_DATA_C2I_LARGE_TENSOR = [(1, 2**30, 4)] |
| |
| # LRN |
| DEFAULT_BETA_LRN = [.2] |
| |
| DEFAULT_DATA_LRN_LARGE_TENSOR = [(2**27, 4, 4, 2)] |
| |
| # Correlation |
| DEFAULT_DATA1_LARGE_TENSOR = [(2**23, 8, 8, 8)] |
| DEFAULT_DATA2_LARGE_TENSOR = [(2**23, 8, 8, 8)] |
| |
| # For regression operators |
| DEFAULT_DATA_REG_LARGE_TENSOR = [(2**29, 2, 2, 2)] |
| DEFAULT_LABEL_REG_LARGE_TENSOR = [(2**29, 2, 2, 2)] |
| |
| # For normalization operators |
| DEFAULT_DATA_NORM_LARGE_TENSOR = [(2**29, 2, 2, 2)] |
| DEFAULT_GAMMA_NORM_LARGE_TENSOR = [(2,)] |
| DEFAULT_BETA_NORM_LARGE_TENSOR = [(2,)] |
| DEFAULT_AXIS_LARGE_TENSOR = [-1] |
| |
| # For optimizer operators |
| DEFAULT_WEIGHT = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_GRAD = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_MOM = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_MEAN = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_VAR = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_N = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_D = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_V = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_Z = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_G = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_R1 = [(1, 1024), (1, 1), (1, 100)] |
| DEFAULT_R2 = [(1, 1024), (1, 1), (1, 100)] |
| DEFAULT_DELTA = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_LRS = [(0.1,0.1)] |
| DEFAULT_LR = [0.1, 0.5, 0.9] |
| DEFAULT_WD = [0.1, 0.5, 0.9] |
| DEFAULT_RHO = [0.1, 0.5, 0.9] |
| DEFAULT_MOMENTUM = [0.1, 0.5, 0.9] |
| DEFAULT_EPSILON = [1e-05] |
| DEFAULT_BETA_1 = [0.1, 0.5, 0.9] |
| DEFAULT_BETA_2 = [0.1, 0.5, 0.9] |
| DEFAULT_T = [1, 5] |
| DEFAULT_RESCALE_GRAD = [0.4, 0.77] |
| DEFAULT_CLIP_GRADIENT = [-1.0, 0.8] |
| DEFAULT_CLIP_WEIGHTS = [-1.0, 0.8] |
| DEFAULT_LAZY_UPDATE = [0, 1] |
| |
| DEFAULT_WEIGHT_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_GRAD_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_MOM_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_MEAN_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_VAR_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_N_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_D_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_V_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_Z_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_G_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| DEFAULT_R1_LARGE_TENSOR = [(1,)] |
| DEFAULT_R2_LARGE_TENSOR = [(1,)] |
| DEFAULT_DELTA_LARGE_TENSOR = [(2**16, 2**16), (2**32, 1), (2**25, 2**7)] |
| |
| # For array manipulation operators |
| # NOTE: Data needs to be a 4D tensor for operators like space_to_depth, depth_to_space etc |
| # Hence below we append 4d to mark the difference. |
| # For depth_to_space, dimension 3 needs to be a multiple of 'block' and 1 should be a multiple of `block^2` |
| DEFAULT_DATA_4d = [(1, 4, 2, 4), (10, 25, 10, 100)] |
| DEFAULT_BLOCK_SIZE = [2, 5] |
| DEFAULT_NUM_OUTPUTS = [1] |
| DEFAULT_PAD_WIDTH_4d = [(0, 0, 0, 0, 1, 1, 1, 1)] |
| DEFAULT_MODE_4d = ["constant"] |
| DEFAULT_REPEATS = [2] |
| |
| # broadcast_axis needs input array with atleast 1 dim of size 1 |
| # since axis is 0 (default) size(dim0)=1 |
| DEFAULT_DATA_DIM1 = [(1, 1024), (1, 1), (1, 100)] |
| DEFAULT_SIZE = [2] |
| |
| DEFAULT_DATA_4d_LARGE_TENSOR = [(1, 4, 2, 2**29), (1,2**4,2**4,2**24)] |
| DEFAULT_BLOCK_SIZE_LARGE_TENSOR = [2, 4] |
| |
| # For miscellaneous operators |
| DEFAULT_DATA_SQUEEZE = [(1, 1024, 1024), (32, 1, 256, 256)] |
| DEFAULT_AXIS_SQUEEZE = [0, 1] |
| DEFAULT_A_MIN = [0.1] |
| DEFAULT_A_MAX = [0.9] |
| DEFAULT_LRS = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_WSS = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_GSS = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_WDS = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_ETA = [.5] |
| DEFAULT_STYPE = ['default', 'csr', 'row_sparse'] |
| DEFAULT_A = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_LHS_FEI = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_MHS = [(1024,), (10000,), (10000,)] |
| DEFAULT_RHS_FEI = [(1024,), (10000,), (10000,)] |
| |
| DEFAULT_DATA_SQUEEZE_LARGE_TENSOR = [(2**32, 1)] |
| DEFAULT_AXIS_SQUEEZE_LARGE_TENSOR = [1] |
| DEFAULT_WSS_LARGE_TENSOR = [(2**32, 1)] |
| DEFAULT_GSS_LARGE_TENSOR = [(2**32, 1)] |
| DEFAULT_WDS_LARGE_TENSOR = [(2**32, 1)] |
| DEFAULT_LHS_FEI_LARGE_TENSOR = [(2, 2**32 + 1)] |
| DEFAULT_RHS_FEI_LARGE_TENSOR = [(2,)] |
| DEFAULT_MHS_LARGE_TENSOR = [(2,)] |
| |
| # For swapaxis operator |
| DEFAULT_DIM_1 = [0] |
| DEFAULT_DIM_2 = [1] |
| |
| # For indexing routines |
| DEFAULT_INDEX = [(1,1024), (1,1), (1,100)] |
| DEFAULT_INDICES = [(1, 1)] |
| DEFAULT_BEGIN = [0] # slice_axis expects int, slice can have tuple/int |
| DEFAULT_END =[1] # same as above |
| DEFAULT_SHAPE_LIKE = [(100, 100), (10, 1), (100, 10)] |
| DEFAULT_X = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_Y = [(1024, 1024), (10000, 1), (10000, 100)] |
| DEFAULT_COND = [(1024,), (10000,), (10000,)] |
| DEFAULT_DEPTH = [0] |
| |
| # For ravel_multi_index op, ndim(shape) = 2; hence data NDArray's first dim = 2 |
| # First dimension of input of ravel operator should match shape parameter dimension |
| # DEFAULT_SHAPE is reused for ravel_multi_index op |
| RAVEL_DATA = [(2, 1024)] |
| |
| RAVEL_DATA_LARGE_TENSOR = [(2, 2**32)] |
| DEFAULT_X_LARGE_TENSOR = [(2**32, 1)] |
| |
| # For loss operators |
| DEFAULT_DATA_3d = [(1024, 100, 100)] |
| DEFAULT_LABEL = [(100,100)] |
| DEFAULT_DATA_SMCE = [(1024, 1024)] |
| DEFAULT_LABEL_SMCE = [(1024,)] |
| |
| DEFAULT_LABEL_LARGE_TENSOR = [(1, 1)] |
| DEFAULT_DATA_CTCLOSS = [(2**32, 1, 1)] |
| DEFAULT_DATA_SMCE_LARGE_TENSOR = [(2**32 + 1, 1)] |
| DEFAULT_LABEL_SMCE_LARGE_TENSOR = [(2**32 + 1,)] |
| |
| # For NN operators |
| DEFAULT_ACT_TYPE_LR = ['leaky', 'elu', 'selu', 'gelu'] |
| DEFAULT_ACT_TYPE_ACTIVATION = ['relu', 'sigmoid', 'log_sigmoid', 'mish', 'softrelu', 'softsign', 'tanh'] |
| DEFAULT_LABEL_SOFTMAX = [(1024, 1024), (10000, 1), (10000, 100)] |
| |
| DEFAULT_LABEL_SOFTMAX_LARGE_TENSOR = [(2**32, 1)] |
| |
| # For linalg operators |
| DEFAULT_A = [(1024, 1024)] |
| DEFAULT_B = [(1024, 1024)] |
| DEFAULT_C = [(1024, 1024)] |
| DEFAULT_A_MT = [(1024, 1035)] |
| DEFAULT_AXES = [[0, 1]] |
| |
| DEFAULT_A_LARGE_TENSOR = [(2**16, 2**16)] |
| DEFAULT_B_LARGE_TENSOR = [(2**16, 2**16)] |
| DEFAULT_C_LARGE_TENSOR = [(2**16, 2**16)] |
| DEFAULT_A_MT_LARGE_TENSOR = [(2**32 + 1, 1)] |
| |
| # Default Inputs. MXNet Op Param Name to Default Input mapping |
| DEFAULTS_INPUTS = {"data": DEFAULT_DATA, |
| "dtype": DEFAULT_DTYPE, |
| "dtype_int": DEFAULT_DTYPE_INT, |
| "dtype_float": DEFAULT_DTYPE_FLOAT, |
| "sample": DEFAULT_SAMPLE, |
| "lhs": DEFAULT_LHS, |
| "rhs": DEFAULT_RHS, |
| "shape": DEFAULT_SHAPE, |
| "low": DEFAULT_LOW, |
| "high": DEFAULT_HIGH, |
| "low_nd": DEFAULT_LOW_ND, |
| "high_nd": DEFAULT_HIGH_ND, |
| "mu_nd": DEFAULT_MU_ND, |
| "sigma": DEFAULT_SIGMA, |
| "alpha_nd": DEFAULT_ALPHA_ND, |
| "beta_nd": DEFAULT_BETA_ND, |
| "lam_nd": DEFAULT_LAM, |
| "k": DEFAULT_K, |
| "p": DEFAULT_P, |
| "k_nd": DEFAULT_K_ND, |
| "p_nd": DEFAULT_P_ND, |
| "axis": DEFAULT_AXIS, |
| "weight" : DEFAULT_WEIGHT, |
| "weight32" : DEFAULT_WEIGHT, |
| "grad" : DEFAULT_GRAD, |
| "mean" : DEFAULT_MEAN, |
| "var" : DEFAULT_VAR, |
| "mom" : DEFAULT_MOM, |
| "r1" : DEFAULT_R1, |
| "r2" : DEFAULT_R2, |
| "n" : DEFAULT_N, |
| "d" : DEFAULT_D, |
| "v" : DEFAULT_V, |
| "z" : DEFAULT_Z, |
| "g" : DEFAULT_G, |
| "delta" : DEFAULT_DELTA, |
| "lr" : DEFAULT_LR, |
| "lrs" : DEFAULT_LRS, |
| "wd" : DEFAULT_WD, |
| "rho" : DEFAULT_RHO, |
| "momentum" : DEFAULT_MOMENTUM, |
| "epsilon" : DEFAULT_EPSILON, |
| "beta1" : DEFAULT_BETA_1, |
| "beta2" : DEFAULT_BETA_2, |
| "t" : DEFAULT_T, |
| "rescale_grad" : DEFAULT_RESCALE_GRAD, |
| "clip_grad" : DEFAULT_CLIP_GRADIENT, |
| "lazy_update" : DEFAULT_LAZY_UPDATE, |
| "data_4d": DEFAULT_DATA_4d, |
| "dim1": DEFAULT_DIM_1, |
| "dim2": DEFAULT_DIM_2, |
| "block_size": DEFAULT_BLOCK_SIZE, |
| "args": DEFAULT_ARGS, |
| "a": DEFAULT_DATA, |
| "index": DEFAULT_INDEX, |
| "indices": DEFAULT_INDICES, |
| "begin": DEFAULT_BEGIN, |
| "end": DEFAULT_END, |
| "shape_like": DEFAULT_SHAPE_LIKE, |
| "x": DEFAULT_X, |
| "y": DEFAULT_Y, |
| "condition": DEFAULT_COND, |
| "depth": DEFAULT_DEPTH, |
| "ravel_data": RAVEL_DATA, |
| "data_smce": DEFAULT_DATA_SMCE, |
| "data_3d": DEFAULT_DATA_3d, |
| "label_smce": DEFAULT_LABEL_SMCE, |
| "label": DEFAULT_LABEL, |
| "num_outputs": DEFAULT_NUM_OUTPUTS, |
| "data_dim1": DEFAULT_DATA_DIM1, |
| "size": DEFAULT_SIZE, |
| "mode_4d": DEFAULT_MODE_4d, |
| "pad_width_4d": DEFAULT_PAD_WIDTH_4d, |
| "repeats": DEFAULT_REPEATS, |
| "reps": DEFAULT_REPEATS, |
| "grid": DEFAULT_GRID, |
| "data_bilinearsampler": DEFAULT_DATA_BILINEAR, |
| "transform_type": DEFAULT_TRANSFORM_TYPE, |
| "data_gridgenerator": DEFAULT_DATA_GRIDGEN, |
| "target_shape_gridgenerator": DEFAULT_TARGET_SHAPE, |
| "data_sample_multinomial": DEFAULT_DATA_SM, |
| "A": DEFAULT_A, |
| "B": DEFAULT_B, |
| "C": DEFAULT_C, |
| "A_linalg_maketrian": DEFAULT_A_MT, |
| "axes": DEFAULT_AXES, |
| "act_type_leakyrelu": DEFAULT_ACT_TYPE_LR, |
| "label_softmax": DEFAULT_LABEL_SOFTMAX, |
| "act_type_activation": DEFAULT_ACT_TYPE_ACTIVATION, |
| "data_squeeze": DEFAULT_DATA_SQUEEZE, |
| "axis_squeeze": DEFAULT_AXIS_SQUEEZE, |
| "a_min": DEFAULT_A_MIN, |
| "a_max": DEFAULT_A_MAX, |
| "lrs": DEFAULT_LRS, |
| "weights_sum_sq": DEFAULT_WSS, |
| "grads_sum_sq": DEFAULT_GSS, |
| "wds": DEFAULT_WDS, |
| "eta": DEFAULT_ETA, |
| "eps": DEFAULT_EPSILON, |
| "stype": DEFAULT_STYPE, |
| "a": DEFAULT_A, |
| "lhs_fill_element_0index": DEFAULT_LHS_FEI, |
| "rhs_fill_element_0index": DEFAULT_RHS_FEI, |
| "mhs": DEFAULT_MHS, |
| "data_spatialtransformer": DEFAULT_DATA_ST, |
| "loc_spatialtransformer": DEFAULT_LOC_TAR_ST, |
| "target_shape": DEFAULT_LOC_TAR_ST, |
| "transform_type_spatialtransformer": DEFAULT_TRANSFORM, |
| "sampler_type": DEFAULT_SAMPLER, |
| "data_col2im": DEFAULT_DATA_C2I, |
| "output_size": DEFAULT_OUTPUT_SIZE, |
| "kernel_col2im": DEFAULT_KERNEL, |
| "stride_col2im": DEFAULT_STRIDE, |
| "parameters": DEFAULT_PARAMETERS, |
| "state": DEFAULT_STATE, |
| "state_size": DEFAULT_STATE_SIZE, |
| "num_layers": DEFAULT_NUM_LAYERS, |
| "data_groupnorm": DEFAULT_DATA_GN, |
| "gamma_groupnorm": DEFAULT_BETA_GAMMA_GN, |
| "beta_groupnorm": DEFAULT_BETA_GAMMA_GN, |
| "num_groups": DEFAULT_NUM_GROUPS, |
| "data_dropout": DEFAULT_DATA_DROPOUT, |
| "mode_dropout": DEFAULT_MODE_DROPOUT, |
| "p_dropout": DEFAULT_P, |
| "data_nn_basic": DEFAULT_DATA_NN_BASIC, |
| "num_hidden": DEFAULT_NUM_HIDDEN, |
| "data_fullyconnected": DEFAULT_DATA_NN_BASIC, |
| "weight_fullyconnected": DEFAULT_WEIGHT_FC, |
| "weight_embedding": DEFAULT_WEIGHT_EMBEDDING, |
| "bias": DEFAULT_BIAS, |
| "flatten": DEFAULT_FLATTEN, |
| "data_batchnorm": DEFAULT_DATA_NN_BASIC, |
| "gamma_batchnorm": DEFAULT_GAMMA, |
| "beta_batchnorm": DEFAULT_BETA, |
| "moving_mean_batchnorm": DEFAULT_MOVING_MEAN, |
| "moving_var_batchnorm": DEFAULT_MOVING_VAR, |
| "axis_batchnorm": DEFAULT_AXIS_BN, |
| "grad_scale": DEFAULT_GRAD_SCALE, |
| "normalization": DEFAULT_NORMALIZATION, |
| "margin": DEFAULT_MARGIN, |
| "regularization_coefficient": DEFAULT_REG_COEFF, |
| "data_l2normalization": DEFAULT_DATA_NN_BASIC, |
| "mode_l2normalization": DEFAULT_MODE_L2, |
| "gamma_layernorm": DEFAULT_GAMMA_LN, |
| "beta_layernorm": DEFAULT_BETA_LN, |
| "data_instancenorm": DEFAULT_DATA_NN_BASIC, |
| "gamma_instancenorm": DEFAULT_GAMMA, |
| "beta_instancenorm": DEFAULT_BETA, |
| "input_dim": DEFAULT_INPUT_DIM, |
| "output_dim": DEFAULT_OUTPUT_DIM, |
| "sparse_grad": DEFAULT_SPARSE_GRAD, |
| "data1": DEFAULT_DATA_NN_BASIC, |
| "data2": DEFAULT_DATA_NN_BASIC, |
| "kernel_size": DEFAULT_KERNEL_SIZE, |
| "max_displacement": DEFAULT_MAX_DISPLACEMENT, |
| "stride1": DEFAULT_STRIDE_1, |
| "stride2": DEFAULT_STRIDE_2, |
| "data_im2col": DEFAULT_DATA_NN_BASIC, |
| "kernel_im2col": DEFAULT_KERNEL_I2C, |
| "stride_im2col": DEFAULT_STRIDE_I2C, |
| "dilate_im2col": DEFAULT_DILATE, |
| "pad_im2col": DEFAULT_PAD, |
| "data_lrn": DEFAULT_DATA_NN_BASIC, |
| "alpha_lrn": DEFAULT_ALPHA, |
| "beta_lrn": DEFAULT_BETA_LRN, |
| "nsize": DEFAULT_NSIZE, |
| "data_layernorm": DEFAULT_DATA_NN_BASIC, |
| "axis_layernorm": DEFAULT_AXIS} |
| |
| # Default Inputs for Large Tensor. MXNet Op Param Name to Default Input mapping |
| DEFAULTS_INPUTS_LARGE_TENSOR = {"data": DEFAULT_DATA_LARGE_TENSOR, |
| "dtype": DEFAULT_DTYPE, |
| "dtype_int": DEFAULT_DTYPE_INT, |
| "dtype_float": DEFAULT_DTYPE_FLOAT, |
| "sample": DEFAULT_SAMPLE_LARGE_TENSOR, |
| "lhs": DEFAULT_LHS_LARGE_TENSOR, |
| "rhs": DEFAULT_RHS_LARGE_TENSOR, |
| "shape": DEFAULT_SHAPE_LARGE_TENSOR, |
| "low": DEFAULT_LOW, |
| "high": DEFAULT_HIGH, |
| "low_nd": DEFAULT_LOW_ND_LARGE_TENSOR, |
| "high_nd": DEFAULT_HIGH_ND_LARGE_TENSOR, |
| "mu_nd": DEFAULT_MU_ND_LARGE_TENSOR, |
| "sigma": DEFAULT_SIGMA_LARGE_TENSOR, |
| "alpha_nd": DEFAULT_ALPHA_ND_LARGE_TENSOR, |
| "beta_nd": DEFAULT_BETA_ND_LARGE_TENSOR, |
| "lam_nd": DEFAULT_LAM_ND_LARGE_TENSOR, |
| "lam_random_pdf_exponential": DEFAULT_LAM_RPE_LARGE_TENSOR, |
| "sample_random_pdf_exponential": DEFAULT_SAMPLE_RPE_LARGE_TENSOR, |
| "k": DEFAULT_K, |
| "p": DEFAULT_P, |
| "k_nd": DEFAULT_K_ND_LARGE_TENSOR, |
| "p_nd": DEFAULT_P_ND_LARGE_TENSOR, |
| "axis": DEFAULT_AXIS, |
| "weight" : DEFAULT_WEIGHT_LARGE_TENSOR, |
| "weight32" : DEFAULT_WEIGHT_LARGE_TENSOR, |
| "grad" : DEFAULT_GRAD_LARGE_TENSOR, |
| "mean" : DEFAULT_MEAN_LARGE_TENSOR, |
| "var" : DEFAULT_VAR_LARGE_TENSOR, |
| "mom" : DEFAULT_MOM_LARGE_TENSOR, |
| "r1": DEFAULT_R1_LARGE_TENSOR, |
| "r2": DEFAULT_R2_LARGE_TENSOR, |
| "n" : DEFAULT_N_LARGE_TENSOR, |
| "d" : DEFAULT_D_LARGE_TENSOR, |
| "v" : DEFAULT_V_LARGE_TENSOR, |
| "z" : DEFAULT_Z_LARGE_TENSOR, |
| "g" : DEFAULT_G_LARGE_TENSOR, |
| "delta" : DEFAULT_DELTA_LARGE_TENSOR, |
| "lr" : DEFAULT_LR, |
| "lrs" : DEFAULT_LRS, |
| "wd": DEFAULT_WD, |
| "rho" : DEFAULT_RHO, |
| "momentum" : DEFAULT_MOMENTUM, |
| "epsilon" : DEFAULT_EPSILON, |
| "beta1" : DEFAULT_BETA_1, |
| "beta2" : DEFAULT_BETA_2, |
| "t" : DEFAULT_T, |
| "rescale_grad" : DEFAULT_RESCALE_GRAD, |
| "clip_grad" : DEFAULT_CLIP_GRADIENT, |
| "lazy_update" : DEFAULT_LAZY_UPDATE, |
| "data_4d": DEFAULT_DATA_4d_LARGE_TENSOR, |
| "dim1": DEFAULT_DIM_1, |
| "dim2": DEFAULT_DIM_2, |
| "block_size": DEFAULT_BLOCK_SIZE_LARGE_TENSOR, |
| "args": DEFAULT_ARGS, |
| "index": DEFAULT_INDEX_LARGE_TENSOR, |
| "data_smce": DEFAULT_DATA_SMCE_LARGE_TENSOR, |
| "label_smce": DEFAULT_LABEL_SMCE_LARGE_TENSOR, |
| "grid": DEFAULT_GRID_LARGE_TENSOR, |
| "data_bilinearsampler": DEFAULT_DATA_BILINEAR_LARGE_TENSOR, |
| "transform_type": DEFAULT_TRANSFORM_TYPE, |
| "data_gridgenerator": DEFAULT_DATA_GRIDGEN_LARGE_TENSOR, |
| "target_shape_gridgenerator": DEFAULT_TARGET_SHAPE_LARGE_TENSOR, |
| "data_sample_multinomial": DEFAULT_DATA_SM_LARGE_TENSOR, |
| "data_random_pdf_dirichlet": DEFAULT_DATA_RPD_LARGE_TENSOR, |
| "alpha_random_pdf_dirichlet": DEFAULT_ALPHA_RPD_LARGE_TENSOR, |
| "sample_random_pdf_gamma": DEFAULT_SAMPLE_RPG_LARGE_TENSOR, |
| "alpha_random_pdf_gamma": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "beta_random_pdf_gamma": DEFAULT_BETA_LARGE_TENSOR, |
| "sample_random_pdf_generalized_negative_binomial": DEFAULT_SAMPLE_RPG_LARGE_TENSOR, |
| "mu_random_pdf_generalized_negative_binomial": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "alpha_random_pdf_generalized_negative_binomial": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "sample_random_pdf_negative_binomial": DEFAULT_SAMPLE_RPG_LARGE_TENSOR, |
| "k_random_pdf_negative_binomial": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "p_random_pdf_negative_binomial": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "sample_random_pdf_normal": DEFAULT_SAMPLE_RPG_LARGE_TENSOR, |
| "mu_random_pdf_normal": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "sigma_random_pdf_normal": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "sample_random_pdf_poisson": DEFAULT_SAMPLE_RPG_LARGE_TENSOR, |
| "lam_random_pdf_poisson": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "sample_random_pdf_uniform": DEFAULT_SAMPLE_RPG_LARGE_TENSOR, |
| "low_random_pdf_uniform": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "high_random_pdf_uniform": DEFAULT_ALPHA_RPG_LARGE_TENSOR, |
| "shape_sample_exponential": DEFAULT_SHAPE_SE_LARGE_TENSOR, |
| "lam_sample_exponential": DEFAULT_LAM_SE_LARGE_TENSOR, |
| "mu_sample_normal": DEFAULT_LAM_SE_LARGE_TENSOR, |
| "sigma_sample_normal": DEFAULT_LAM_SE_LARGE_TENSOR, |
| "shape_sample_poisson": DEFAULT_LAM_SE_LARGE_TENSOR, |
| "lam_sample_poisson": DEFAULT_SHAPE_SE_LARGE_TENSOR, |
| "shape_sample_uniform": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "low_sample_uniform": DEFAULT_LAM_SE_LARGE_TENSOR, |
| "high_sample_uniform": DEFAULT_LAM_SE_LARGE_TENSOR, |
| "alpha_sample_gamma": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "beta_sample_gamma": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "mu_sample_generalized_negative_binomial": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "shape_sample_generalized_negative_binomial": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "alpha_sample_generalized_negative_binomial": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "shape_sample_negative_binomial": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "k_sample_negative_binomial": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "p_sample_negative_binomial": DEFAULT_SHAPE_SU_LARGE_TENSOR, |
| "A": DEFAULT_A_LARGE_TENSOR, |
| "B": DEFAULT_B_LARGE_TENSOR, |
| "C": DEFAULT_C_LARGE_TENSOR, |
| "A_linalg_maketrian": DEFAULT_A_MT_LARGE_TENSOR, |
| "axes": DEFAULT_AXES, |
| "act_type_leakyrelu": DEFAULT_ACT_TYPE_LR, |
| "label_softmax": DEFAULT_LABEL_SOFTMAX_LARGE_TENSOR, |
| "act_type_activation": DEFAULT_ACT_TYPE_ACTIVATION, |
| "data_squeeze": DEFAULT_DATA_SQUEEZE_LARGE_TENSOR, |
| "axis_squeeze": DEFAULT_AXIS_SQUEEZE_LARGE_TENSOR, |
| "a_min": DEFAULT_A_MIN, |
| "a_max": DEFAULT_A_MAX, |
| "weights_sum_sq": DEFAULT_WSS_LARGE_TENSOR, |
| "grads_sum_sq": DEFAULT_GSS_LARGE_TENSOR, |
| "wds": DEFAULT_WDS_LARGE_TENSOR, |
| "eta": DEFAULT_ETA, |
| "eps": DEFAULT_EPSILON, |
| "stype": DEFAULT_STYPE, |
| "indices": DEFAULT_INDICES, |
| "begin": DEFAULT_BEGIN, |
| "end": DEFAULT_END, |
| "shape_like": DEFAULT_DATA_LARGE_TENSOR, |
| "depth": DEFAULT_DEPTH, |
| "condition": DEFAULT_X_LARGE_TENSOR, |
| "x": DEFAULT_X_LARGE_TENSOR, |
| "y": DEFAULT_X_LARGE_TENSOR, |
| "ravel_data": RAVEL_DATA_LARGE_TENSOR, |
| "a": DEFAULT_A_LARGE_TENSOR, |
| "lhs_fill_element_0index": DEFAULT_LHS_FEI_LARGE_TENSOR, |
| "rhs_fill_element_0index": DEFAULT_RHS_FEI_LARGE_TENSOR, |
| "mhs": DEFAULT_MHS_LARGE_TENSOR, |
| "lrs_multi_lars": DEFAULT_WSS_LARGE_TENSOR, |
| "data_softmax": DEFAULT_LABEL_SOFTMAX_LARGE_TENSOR, |
| "data_spatialtransformer": DEFAULT_DATA_ST_LARGE_TENSOR, |
| "loc_spatialtransformer": DEFAULT_LOC_TAR_ST_LARGE_TENSOR, |
| "target_shape": DEFAULT_LOC_TAR_ST_LARGE_TENSOR, |
| "transform_type_spatialtransformer": DEFAULT_TRANSFORM, |
| "sampler_type": DEFAULT_SAMPLER, |
| "data_col2im": DEFAULT_DATA_C2I_LARGE_TENSOR, |
| "output_size": DEFAULT_OUTPUT_SIZE_LARGE_TENSOR, |
| "kernel_col2im": DEFAULT_KERNEL_LARGE_TENSOR, |
| "stride_col2im": DEFAULT_STRIDE_LARGE_TENSOR, |
| "data_ctcloss": DEFAULT_DATA_CTCLOSS, |
| "label_ctcloss": DEFAULT_LABEL_LARGE_TENSOR, |
| "data_ctc_loss": DEFAULT_DATA_CTCLOSS, |
| "label_ctc_loss": DEFAULT_LABEL_LARGE_TENSOR, |
| "parameters": DEFAULT_PARAMETERS_LARGE_TENSOR, |
| "state": DEFAULT_STATE_LARGE_TENSOR, |
| "state_size": DEFAULT_STATE_SIZE_LARGE_TENSOR, |
| "num_layers": DEFAULT_NUM_LAYERS_LARGE_TENSOR, |
| "data_groupnorm": DEFAULT_DATA_GN_LARGE_TENSOR, |
| "gamma_groupnorm": DEFAULT_BETA_GAMMA_GN_LARGE_TENSOR, |
| "beta_groupnorm": DEFAULT_BETA_GAMMA_GN_LARGE_TENSOR, |
| "data_dropout": DEFAULT_DATA_DROPOUT_LARGE_TENSOR, |
| "mode_dropout": DEFAULT_MODE_DROPOUT, |
| "p_dropout": DEFAULT_P_DROPOUT_LARGE_TENSOR, |
| "axes_dropout": DEFAULT_AXES_DROPOUT_LARGE_TENSOR, |
| "data_nn_basic": DEFAULT_DATA_NN_BASIC_LARGE_TENSOR, |
| "num_hidden": DEFAULT_NUM_HIDDEN_LARGE_TENSOR, |
| "data_fullyconnected": DEFAULT_DATA_FC_LARGE_TENSOR, |
| "weight_fullyconnected": DEFAULT_WEIGHT_FC_LARGE_TENSOR, |
| "num_hidden_fullyconnected": DEFAULT_NUM_HIDDEN_FC_LARGE_TENSOR, |
| "weight_embedding": DEFAULT_WEIGHT_EMBEDDING_LARGE_TENSOR, |
| "bias": DEFAULT_BIAS_LARGE_TENSOR, |
| "flatten": DEFAULT_FLATTEN_LARGE_TENSOR, |
| "data_batchnorm": DEFAULT_DATA_NN_BASIC_LARGE_TENSOR, |
| "gamma_batchnorm": DEFAULT_GAMMA_LARGE_TENSOR, |
| "beta_batchnorm": DEFAULT_BETA_LARGE_TENSOR, |
| "moving_mean_batchnorm": DEFAULT_MOVING_MEAN_LARGE_TENSOR, |
| "moving_var_batchnorm": DEFAULT_MOVING_VAR_LARGE_TENSOR, |
| "axis_batchnorm": DEFAULT_AXIS_BN, |
| "grad_scale": DEFAULT_GRAD_SCALE, |
| "normalization": DEFAULT_NORMALIZATION, |
| "margin": DEFAULT_MARGIN, |
| "regularization_coefficient": DEFAULT_REG_COEFF, |
| "data_l2normalization": DEFAULT_DATA_NORM_LARGE_TENSOR, |
| "mode_l2normalization": DEFAULT_MODE_L2, |
| "gamma_layernorm": DEFAULT_GAMMA_NORM_LARGE_TENSOR, |
| "beta_layernorm": DEFAULT_BETA_NORM_LARGE_TENSOR, |
| "data_instancenorm": DEFAULT_DATA_NORM_LARGE_TENSOR, |
| "gamma_instancenorm": DEFAULT_GAMMA_NORM_LARGE_TENSOR, |
| "beta_instancenorm": DEFAULT_GAMMA_NORM_LARGE_TENSOR, |
| "input_dim": DEFAULT_INPUT_DIM_LARGE_TENSOR, |
| "output_dim": DEFAULT_OUTPUT_DIM_LARGE_TENSOR, |
| "sparse_grad": DEFAULT_SPARSE_GRAD, |
| "data1": DEFAULT_DATA1_LARGE_TENSOR, |
| "data2": DEFAULT_DATA2_LARGE_TENSOR, |
| "kernel_size": DEFAULT_KERNEL_SIZE_LARGE_TENSOR, |
| "max_displacement": DEFAULT_MAX_DISPLACEMENT_LARGE_TENSOR, |
| "stride1": DEFAULT_STRIDE_1_LARGE_TENSOR, |
| "stride2": DEFAULT_STRIDE_2_LARGE_TENSOR, |
| "data_im2col": DEFAULT_DATA_I2C_LARGE_TENSOR, |
| "kernel_im2col": DEFAULT_KERNEL_I2C_LARGE_TENSOR, |
| "stride_im2col": DEFAULT_STRIDE_I2C_LARGE_TENSOR, |
| "dilate_im2col": DEFAULT_DILATE_LARGE_TENSOR, |
| "pad_im2col": DEFAULT_PAD_LARGE_TENSOR, |
| "data_lrn": DEFAULT_DATA_LRN_LARGE_TENSOR, |
| "alpha_lrn": DEFAULT_ALPHA, |
| "beta_lrn": DEFAULT_BETA_LRN, |
| "nsize": DEFAULT_NSIZE, |
| "data_layernorm": DEFAULT_DATA_NORM_LARGE_TENSOR, |
| "axis_layernorm": DEFAULT_AXIS_LARGE_TENSOR} |
| |
| # These are names of MXNet operator parameters that is of type NDArray. |
| # We maintain this list to automatically recognize these parameters are to be |
| # given as NDArray and translate users inputs such as a shape tuple, Numpy Array or |
| # a list to MXNet NDArray. This is just a convenience added so benchmark utility users |
| # can just say shape of the tensor, and we automatically create Tensors. |
| PARAMS_OF_TYPE_NDARRAY = ["lhs", "rhs", "data", "base", "exp", "sample", |
| "mu", "sigma", "lam", "alpha", "beta", "gamma", "k", "p", |
| "low", "high", "weight", "bias", "moving_mean", "moving_var", |
| "weight", "weight32", "grad", "mean", "var", "mom", "n", "d", |
| "v", "z", "g", "delta", "args", "indices", "shape_like", "y", |
| "x", "condition", "a", "index", "raveL_data", "label", "grid", |
| "A", "B", "C", "r1", "r2", "rois", "lrs", "wds", "weights_sum_sq", |
| "grads_sum_sq", "mhs", "data1", "data2", "loc", "parameters", "state", |
| "state_cell", "tensor", "arrays", "mask", "running_mean", "running_var"] |
| |
| PARAMS_OF_TYPE_NP_ARRAY = ["x1", "x2", "prototype", "source_array", "object", "a", "b", "fill_value", "array", "x", "arr", |
| "values", "ary", "seq", "arrays", "tup", "indices", "m", "ar", "q", "p", "condition", |
| "arys", "v", "A", "xp", "fp", "data", "gamma", "beta", "running_mean", "moving_mean", "moving_var", |
| "running_var", "weight", "index", "lhs", "rhs", "parameters", "state", "mask", "bias"] |
| |