blob: c88957de67da5dd795a87cec51fcd673ea98cac1 [file] [log] [blame]
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/
/*!
* \file elemwise_binary_broadcast_op_extended.cc
* \brief CPU Implementation of extended functions for elementwise binary broadcast operator.
*/
#include "./elemwise_unary_op.h"
#include "./elemwise_binary_op.h"
#include "./elemwise_binary_broadcast_op.h"
namespace mxnet {
namespace op {
MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_power)
.describe(
R"code(Returns result of first array elements raised to powers from second array, element-wise with broadcasting.
Example::
x = [[ 1., 1., 1.],
[ 1., 1., 1.]]
y = [[ 0.],
[ 1.]]
broadcast_power(x, y) = [[ 2., 2., 2.],
[ 4., 4., 4.]]
)code" ADD_FILELINE)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::power>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_power"});
NNVM_REGISTER_OP(_backward_broadcast_power)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>(
"FCompute<cpu>",
BinaryBroadcastBackwardUseIn<cpu, mshadow_op::power_grad, mshadow_op::power_rgrad>);
MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_maximum)
.add_alias("_npi_maximum")
.describe(R"code(Returns element-wise maximum of the input arrays with broadcasting.
This function compares two input arrays and returns a new array having the element-wise maxima.
Example::
x = [[ 1., 1., 1.],
[ 1., 1., 1.]]
y = [[ 0.],
[ 1.]]
broadcast_maximum(x, y) = [[ 1., 1., 1.],
[ 1., 1., 1.]]
)code" ADD_FILELINE)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::maximum>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_maximum"});
NNVM_REGISTER_OP(_backward_broadcast_maximum)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>",
BinaryBroadcastBackwardUseIn<cpu, mshadow_op::ge, mshadow_op::lt>);
MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_minimum)
.add_alias("_npi_minimum")
.describe(R"code(Returns element-wise minimum of the input arrays with broadcasting.
This function compares two input arrays and returns a new array having the element-wise minima.
Example::
x = [[ 1., 1., 1.],
[ 1., 1., 1.]]
y = [[ 0.],
[ 1.]]
broadcast_maximum(x, y) = [[ 0., 0., 0.],
[ 1., 1., 1.]]
)code" ADD_FILELINE)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::minimum>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_minimum"});
NNVM_REGISTER_OP(_backward_broadcast_minimum)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>",
BinaryBroadcastBackwardUseIn<cpu, mshadow_op::le, mshadow_op::gt>);
MXNET_OPERATOR_REGISTER_BINARY_BROADCAST(broadcast_hypot)
.describe(R"code( Returns the hypotenuse of a right angled triangle, given its "legs"
with broadcasting.
It is equivalent to doing :math:`sqrt(x_1^2 + x_2^2)`.
Example::
x = [[ 3., 3., 3.]]
y = [[ 4.],
[ 4.]]
broadcast_hypot(x, y) = [[ 5., 5., 5.],
[ 5., 5., 5.]]
z = [[ 0.],
[ 4.]]
broadcast_hypot(x, z) = [[ 3., 3., 3.],
[ 5., 5., 5.]]
)code" ADD_FILELINE)
.set_attr<FCompute>("FCompute<cpu>", BinaryBroadcastCompute<cpu, mshadow_op::hypot>)
.set_attr<nnvm::FGradient>("FGradient", ElemwiseGradUseIn{"_backward_broadcast_hypot"});
NNVM_REGISTER_OP(_backward_broadcast_hypot)
.set_num_inputs(3)
.set_num_outputs(2)
.set_attr<nnvm::TIsBackward>("TIsBackward", true)
.set_attr<nnvm::FInplaceOption>("FInplaceOption",
[](const NodeAttrs& attrs) {
return std::vector<std::pair<int, int> >{{0, 1}};
})
.set_attr<FResourceRequest>("FResourceRequest",
[](const NodeAttrs& attrs) {
return std::vector<ResourceRequest>{ResourceRequest::kTempSpace};
})
.set_attr<FCompute>("FCompute<cpu>",
BinaryBroadcastBackwardUseIn<cpu,
mshadow_op::hypot_grad_left,
mshadow_op::hypot_grad_right>);
} // namespace op
} // namespace mxnet