blob: bc5f3d7da6eee5da0670760617517845e67783bf [file] [log] [blame]
/*!
* Copyright (c) 2015 by Contributors
* \file rnn-inl.h
* \brief
* \author Sebastian Bodenstein
*/
#ifndef MXNET_OPERATOR_RNN_INL_H_
#define MXNET_OPERATOR_RNN_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <algorithm>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include "./operator_common.h"
namespace mxnet {
namespace op {
namespace rnn_enum {
enum RNNOpInputs {kData, kParams, kState, kStateCell};
enum RNNOpOutputs {kOut, kStateOut, kStateCellOut};
enum RNNModeType {kRnnRelu, kRnnTanh, kLstm, kGru};
enum RNNOpResource {kTempSpace};
}
// A utility function to calculate input size
inline int rnn_single_param_size(int inputSize,
int hiddenSize,
int mode) {
int size = hiddenSize * (hiddenSize + inputSize + 2);
// Different RNN's have different num weights
switch (mode) {
case rnn_enum::kRnnRelu:
size *= 1;
break;
case rnn_enum::kRnnTanh:
size *= 1;
break;
case rnn_enum::kLstm:
size *= 4;
break;
case rnn_enum::kGru:
size *= 3;
break;
}
return size;
}
inline int rnn_param_size(int layerNum,
int inputSize,
int hiddenSize,
bool bidirectional,
int mode) {
// get size of first layer
int size = rnn_single_param_size(inputSize, hiddenSize, mode);
// get size of remaining layers
if (bidirectional) {
size += (layerNum - 1) * rnn_single_param_size(2 * hiddenSize, hiddenSize, mode);
size *= 2;
} else {
size += (layerNum - 1) * rnn_single_param_size(hiddenSize, hiddenSize, mode);
}
return size;
}
struct RNNParam : public dmlc::Parameter<RNNParam> {
uint32_t state_size;
uint32_t num_layers;
bool bidirectional, state_outputs;
int mode;
float p, pkeep_;
int seq_length_, batch_size_, input_size_;
bool lstm_q_; // whether type is lstm
DMLC_DECLARE_PARAMETER(RNNParam) {
DMLC_DECLARE_FIELD(state_size)
.describe("size of the state for each layer");
DMLC_DECLARE_FIELD(num_layers)
.describe("number of stacked layers");
DMLC_DECLARE_FIELD(bidirectional).set_default(false)
.describe("whether to use bidirectional recurrent layers");
DMLC_DECLARE_FIELD(mode)
.add_enum("rnn_relu", rnn_enum::kRnnRelu)
.add_enum("rnn_tanh", rnn_enum::kRnnTanh)
.add_enum("lstm", rnn_enum::kLstm)
.add_enum("gru", rnn_enum::kGru)
.describe("the type of RNN to compute");
DMLC_DECLARE_FIELD(p).set_default(0.)
.set_range(0, 1)
.describe("Dropout probability, fraction of the input that gets dropped out at training time");
DMLC_DECLARE_FIELD(state_outputs).set_default(false)
.describe("Whether to have the states as symbol outputs.");
}
};
template<typename xpu, typename DType>
class RNNOp : public Operator {
public:
explicit RNNOp(RNNParam p) {
}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
// TODO(sbodenstein): add MShadow implementation
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
// TODO(sbodenstein): add MShadow implementation
}
private:
RNNParam param_;
}; // class RNNOp
template<typename xpu>
Operator* CreateOp(RNNParam param, int dtype);
#if DMLC_USE_CXX11
class RNNProp : public OperatorProperty {
public:
std::vector<std::string> ListArguments() const override {
if (param_.mode == rnn_enum::kLstm) {
return {"data", "parameters", "state", "state_cell"};
} else {
return {"data", "parameters", "state"};
}
}
std::vector<std::string> ListOutputs() const override {
std::vector<std::string> outputs = {"output"};
if (!param_.state_outputs)
return outputs;
else
outputs.push_back("state");
if (param_.mode == rnn_enum::kLstm)
outputs.push_back("state_cell");
return outputs;
}
int NumOutputs() const override {
int mode_num = (param_.mode == rnn_enum::kLstm) ? 2 : 1;
int num_outputs = param_.state_outputs ? (mode_num + 1) : 1;
return num_outputs;
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
std::vector<TShape> *aux_shape) const override {
using namespace mshadow;
if (param_.mode == rnn_enum::kLstm) {
CHECK_EQ(in_shape->size(), 4U) << "Input:[data, parameters, state, cell_state]";
} else {
CHECK_EQ(in_shape->size(), 3U) << "Input:[data, parameters, state]";
}
const TShape &dshape = (*in_shape)[rnn_enum::kData];
if (dshape.ndim() == 0) return false;
CHECK_EQ(dshape.ndim(), 3U) \
<< "Input data should be rank-3 tensor of dim [sequence length, batch size, input size]";
// data: [sequence len, batch, input dimension]
int batch_size = dshape[1];
int input_size = dshape[2];
int numDirections = param_.bidirectional ? 2 : 1;
int total_layers = numDirections * param_.num_layers; // double for bidirectional
SHAPE_ASSIGN_CHECK(*in_shape,
rnn_enum::kState,
Shape3(total_layers, batch_size, param_.state_size));
if (param_.mode == rnn_enum::kLstm)
SHAPE_ASSIGN_CHECK(*in_shape,
rnn_enum::kStateCell,
Shape3(total_layers, batch_size, param_.state_size));
// calculate parameter vector length
int param_size = rnn_param_size(param_.num_layers,
input_size,
param_.state_size,
param_.bidirectional,
param_.mode);
SHAPE_ASSIGN_CHECK(*in_shape, rnn_enum::kParams, Shape1(param_size));
out_shape->clear();
// output: [sequence len, batch, output size]
TShape oshape = dshape;
oshape[2] = numDirections * param_.state_size;
out_shape->push_back(oshape);
if (!param_.state_outputs) {
return true;
} else {
// outStateShape: [layer_num, batch, state size]
TShape outStateShape = dshape;
outStateShape[0] = total_layers;
outStateShape[1] = batch_size;
outStateShape[2] = param_.state_size;
out_shape->push_back(outStateShape);
// Deal with lstm cell state
if (param_.mode == rnn_enum::kLstm)
out_shape->push_back(outStateShape);
return true;
}
}
bool InferType(std::vector<int> *in_type,
std::vector<int> *out_type,
std::vector<int> *aux_type) const override {
CHECK_GE(in_type->size(), 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (index_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
} else {
CHECK_EQ((*in_type)[i], dtype) << "This layer requires uniform type. "
<< "Expected " << dtype << " v.s. given "
<< (*in_type)[i] << " at " << ListArguments()[i];
}
}
out_type->clear();
out_type->push_back(dtype);
if (!param_.state_outputs) {
return true;
} else {
out_type->push_back(dtype);
// Deal with lstm cell state
if (param_.mode == rnn_enum::kLstm)
out_type->push_back(dtype);
return true;
}
}
OperatorProperty* Copy() const override {
auto ptr = new RNNProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "RNN";
}
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
std::vector<int> dep = {in_data[rnn_enum::kData], in_data[rnn_enum::kParams],
in_data[rnn_enum::kState], out_data[rnn_enum::kOut], out_grad[rnn_enum::kOut]};
if (param_.state_outputs) {
dep.push_back(out_data[rnn_enum::kStateOut]);
dep.push_back(out_grad[rnn_enum::kStateOut]);
}
if (param_.mode == rnn_enum::kLstm) {
dep.push_back(in_data[rnn_enum::kStateCell]);
if (param_.state_outputs) {
dep.push_back(out_data[rnn_enum::kStateCellOut]);
dep.push_back(out_grad[rnn_enum::kStateCellOut]);
}
}
return dep;
}
std::vector<ResourceRequest> ForwardResource(
const std::vector<TShape> &in_shape) const override {
return {ResourceRequest::kTempSpace};
}
std::vector<ResourceRequest> BackwardResource(
const std::vector<TShape> &in_shape) const override {
return {ResourceRequest::kTempSpace};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented";
return NULL;
}
Operator* CreateOperatorEx(Context ctx, std::vector<TShape> *in_shape,
std::vector<int> *in_type) const override;
private:
RNNParam param_;
}; // class RNNProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_RNN_INL_H_