blob: 6ba209bfb28eb74aac5e454b476d793169398b2b [file] [log] [blame]
/*!
* Copyright (c) 2015 by Contributors
* \file correlation-inl.h
* \brief correlation operator and symbol
* \author Xu Dong
*/
#ifndef MXNET_OPERATOR_CORRELATION_INL_H_
#define MXNET_OPERATOR_CORRELATION_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include "./mshadow_op.h"
#include "./operator_common.h"
namespace mxnet {
namespace op {
// Declare enumeration of input order to make code more intuitive.
// These enums are only visible within this header
namespace Correlation {
enum CorrelationOpInputs{kData1, kData2};
enum CorrelationOpOutputs{kOut, kTemp1, kTemp2};
} // namespace Correlation
struct CorrelationParam : public dmlc::Parameter<CorrelationParam> {
uint32_t max_displacement;
uint32_t kernel_size;
uint32_t pad_size;
uint32_t stride1;
uint32_t stride2;
bool is_multiply;
DMLC_DECLARE_PARAMETER(CorrelationParam) {
DMLC_DECLARE_FIELD(kernel_size).set_default(1)
.describe("kernel size for Correlation must be an odd number");
DMLC_DECLARE_FIELD(max_displacement).set_default(1)
.describe("Max displacement of Correlation ");
DMLC_DECLARE_FIELD(stride1).set_default(1)
.describe("stride1 quantize data1 globally");
DMLC_DECLARE_FIELD(stride2).set_default(1)
.describe("stride2 quantize data2 within the neighborhood centered around data1");
DMLC_DECLARE_FIELD(pad_size).set_default(0)
.describe("pad for Correlation");
DMLC_DECLARE_FIELD(is_multiply).set_default(true)
.describe("operation type is either multiplication or subduction");
}
};
template<typename xpu>
class CorrelationOp : public Operator {
public:
explicit CorrelationOp(CorrelationParam param) {
this->param_ = param;
}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
CHECK_EQ(in_data.size(), 2U);
CHECK_EQ(out_data.size(), 3U);
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 4> data1 = in_data[Correlation::kData1].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> data2 = in_data[Correlation::kData2].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> out = out_data[Correlation::kOut].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> tmp1 = out_data[Correlation::kTemp1].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> tmp2 = out_data[Correlation::kTemp2].get<xpu, 4, real_t>(s);
tmp1 = 0.0f;
tmp2 = 0.0f;
out = 0.0f;
CHECK_EQ(data1.CheckContiguous(), true);
CHECK_EQ(data2.CheckContiguous(), true);
CHECK_EQ(out.CheckContiguous(), true);
CHECK_EQ(tmp1.CheckContiguous(), true);
CHECK_EQ(tmp2.CheckContiguous(), true);
paddedbottomheight = data1.shape_[2] + 2 * param_.pad_size;
paddedbottomwidth = data1.shape_[3] + 2 * param_.pad_size;
kernel_radius_ = (param_.kernel_size - 1) / 2;
border_size_ = param_.max_displacement + kernel_radius_;
stride1 = param_.stride1;
stride2 = param_.stride2;
top_width_ = ceil(static_cast<float>(paddedbottomwidth - border_size_ * 2)\
/ static_cast<float>(stride1));
top_height_ = ceil(static_cast<float>(paddedbottomheight - border_size_ * 2)\
/ static_cast<float>(stride1));
neighborhood_grid_radius_ = param_.max_displacement / stride2;
neighborhood_grid_width_ = neighborhood_grid_radius_ * 2 + 1;
top_channels_ = neighborhood_grid_width_ * neighborhood_grid_width_;
num = data1.shape_[0];
channels = data1.shape_[1];
height = data1.shape_[2];
width = data1.shape_[3];
CorrelationForward(out, data1, data2, tmp1, tmp2, top_channels_, top_height_, top_width_,
param_.pad_size, param_.is_multiply,
param_.max_displacement, param_.kernel_size,
neighborhood_grid_radius_, neighborhood_grid_width_,
kernel_radius_, param_.stride1, param_.stride2);
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 4> grad_data1 = in_grad[Correlation::kData1].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> grad_data2 = in_grad[Correlation::kData2].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> out_g = out_grad[Correlation::kOut].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> tmp1 = out_data[Correlation::kTemp1].get<xpu, 4, real_t>(s);
Tensor<xpu, 4> tmp2 = out_data[Correlation::kTemp2].get<xpu, 4, real_t>(s);
if (req[0] != kAddTo) grad_data1 = 0.0f;
if (req[1] != kAddTo) grad_data2 = 0.0f;
CHECK_EQ(grad_data1.CheckContiguous(), true);
CHECK_EQ(grad_data2.CheckContiguous(), true);
CHECK_EQ(out_g.CheckContiguous(), true);
CHECK_EQ(tmp1.CheckContiguous(), true);
CHECK_EQ(tmp2.CheckContiguous(), true);
CorrelationBackward(out_g, grad_data1, grad_data2, tmp1, tmp2, top_channels_,
top_height_, top_width_, param_.pad_size, param_.is_multiply,
param_.max_displacement, param_.kernel_size, neighborhood_grid_radius_,
neighborhood_grid_width_, kernel_radius_, param_.stride1, param_.stride2,
num, channels, height, width);
}
private:
CorrelationParam param_;
int paddedbottomheight;
int paddedbottomwidth;
uint32_t kernel_radius_;
uint32_t border_size_;
uint32_t stride1;
uint32_t stride2;
uint32_t top_width_;
uint32_t top_height_;
uint32_t neighborhood_grid_radius_;
uint32_t neighborhood_grid_width_;
uint32_t top_channels_;
int num;
int channels;
int height;
int width;
}; // class CorrelationOp
// Decalre Factory function
template<typename xpu>
Operator* CreateOp(CorrelationParam param);
#if DMLC_USE_CXX11
class CorrelationProp : public OperatorProperty {
public:
std::vector<std::string> ListArguments() const override {
return {"data1", "data2"};
}
std::vector<std::string> ListOutputs() const override {
return {"output", "tmp1", "tmp2"};
}
int NumOutputs() const override {
return 3;
}
int NumVisibleOutputs() const override {
return 1;
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
std::vector<TShape> *aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), 2U) << "Input:[data1, data2]";
TShape dshape1 = in_shape->at(Correlation::kData1);
TShape dshape2 = in_shape->at(Correlation::kData2);
CHECK_EQ(dshape1.ndim(), 4U) << "data should be a 4D tensor";
CHECK_EQ(dshape2.ndim(), 4U) << "data should be a 4D tensor";
int paddedbottomheight;
int paddedbottomwidth;
uint32_t kernel_radius_;
uint32_t stride1;
uint32_t stride2;
uint32_t top_width_;
uint32_t top_height_;
uint32_t neighborhood_grid_radius_;
uint32_t neighborhood_grid_width_;
uint32_t top_channels_;
uint32_t border_size_;
paddedbottomheight = dshape1[2] + 2*param_.pad_size;
paddedbottomwidth = dshape1[3] + 2*param_.pad_size;
kernel_radius_ = (param_.kernel_size -1)/2;
border_size_ = param_.max_displacement + kernel_radius_;
stride1 = param_.stride1;
stride2 = param_.stride2;
top_width_ = ceil(static_cast<float>(paddedbottomwidth - border_size_ * 2)\
/ static_cast<float>(stride1));
top_height_ = ceil(static_cast<float>(paddedbottomheight - border_size_ * 2)\
/ static_cast<float>(stride1));
neighborhood_grid_radius_ = param_.max_displacement / stride2;
neighborhood_grid_width_ = neighborhood_grid_radius_ * 2 + 1;
top_channels_ = neighborhood_grid_width_ * neighborhood_grid_width_;
CHECK_GE(top_width_, 1U) <<
"Correlation cannot be done with current settings.Neighborhood and kernel don't fit in blob";
CHECK_GE(top_height_, 1U) <<
"Correlation cannot be done with current settings.Neighborhood and kernel don't fit in blob";
out_shape->clear();
out_shape->push_back(Shape4(dshape1[0], top_channels_, top_height_, top_width_));
out_shape->push_back(Shape4(dshape1[0], paddedbottomheight, paddedbottomwidth, dshape1[1]));
out_shape->push_back(Shape4(dshape1[0], paddedbottomheight, paddedbottomwidth, dshape1[1]));
return true;
}
OperatorProperty* Copy() const override {
CorrelationProp* Correlation_sym = new CorrelationProp();
Correlation_sym->param_ = this->param_;
return Correlation_sym;
}
std::string TypeString() const override {
return "Correlation";
}
// decalre dependency and inplace optimization options
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
return {out_grad[Correlation::kOut],
out_data[Correlation::kTemp1], out_data[Correlation::kTemp2]};
}
Operator* CreateOperator(Context ctx) const override;
private:
CorrelationParam param_;
}; // class CorrelationProp
#endif
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_CORRELATION_INL_H_