blob: a97d53b322e8d5984e9e754038c390866356157f [file] [log] [blame]
/*!
* Copyright (c) 2017 by Contributors
* \file convolution-inl.h
* \brief
* \ref: https://github.com/Yangqing/caffe/wiki/Convolution-in-Caffe:-a-memo
* \author Bing Xu, Jun Wu
*/
#ifndef MXNET_OPERATOR_CONVOLUTION_INL_H_
#define MXNET_OPERATOR_CONVOLUTION_INL_H_
#include <mxnet/io.h>
#include <mxnet/base.h>
#include <mxnet/ndarray.h>
#include <mxnet/operator.h>
#include <mxnet/operator_util.h>
#include <dmlc/logging.h>
#include <dmlc/optional.h>
#include <algorithm>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include "./operator_common.h"
#include "./nn/im2col.h"
namespace mxnet {
namespace op {
namespace conv {
enum ConvolutionOpInputs {kData, kWeight, kBias};
enum ConvolutionOpOutputs {kOut};
enum ConvolutionOpResource {kTempSpace};
enum ConvolutionOpCudnnTune {kOff, kLimited, kFastest};
}
struct ConvolutionParam : public dmlc::Parameter<ConvolutionParam> {
TShape kernel;
TShape stride;
TShape dilate;
TShape pad;
uint32_t num_filter;
uint32_t num_group;
uint64_t workspace;
bool no_bias;
dmlc::optional<int> cudnn_tune;
bool cudnn_off;
dmlc::optional<int> layout;
DMLC_DECLARE_PARAMETER(ConvolutionParam) {
DMLC_DECLARE_FIELD(kernel).describe("convolution kernel size: (h, w) or (d, h, w)");
DMLC_DECLARE_FIELD(stride).set_default(TShape())
.describe("convolution stride: (h, w) or (d, h, w)");
DMLC_DECLARE_FIELD(dilate).set_default(TShape())
.describe("convolution dilate: (h, w) or (d, h, w)");
DMLC_DECLARE_FIELD(pad).set_default(TShape())
.describe("pad for convolution: (h, w) or (d, h, w)");
DMLC_DECLARE_FIELD(num_filter).set_range(1, 100000)
.describe("convolution filter(channel) number");
DMLC_DECLARE_FIELD(num_group).set_default(1)
.describe("Number of group partitions.");
DMLC_DECLARE_FIELD(workspace).set_default(1024).set_range(0, 8192)
.describe("Maximum temporary workspace allowed for convolution (MB).");
DMLC_DECLARE_FIELD(no_bias).set_default(false)
.describe("Whether to disable bias parameter.");
DMLC_DECLARE_FIELD(cudnn_tune)
.add_enum("off", conv::kOff)
.add_enum("limited_workspace", conv::kLimited)
.add_enum("fastest", conv::kFastest)
.set_default(dmlc::optional<int>())
.describe("Whether to pick convolution algo by running performance test.");
DMLC_DECLARE_FIELD(cudnn_off).set_default(false)
.describe("Turn off cudnn for this layer.");
DMLC_DECLARE_FIELD(layout)
.add_enum("NCW", mshadow::kNCW)
.add_enum("NCHW", mshadow::kNCHW)
.add_enum("NCDHW", mshadow::kNCDHW)
.add_enum("NHWC", mshadow::kNHWC)
.add_enum("NDHWC", mshadow::kNDHWC)
.set_default(dmlc::optional<int>())
.describe("Set layout for input, output and weight. Empty for\n "
"default layout: NCW for 1d, NCHW for 2d and NCDHW for 3d.");
}
// Adjusts kernel size for effects of dilation in the dimension `dim`.
index_t DilatedKernelSize(int dim) const {
return 1 + (kernel[dim] - 1) * dilate[dim];
}
};
template<typename xpu, typename DType>
class ConvolutionOp : public Operator {
public:
explicit ConvolutionOp(ConvolutionParam p) {
this->param_ = p;
// convert MBytes first to Bytes and then to elements.
param_.workspace = (param_.workspace << 20) / sizeof(DType);
CHECK(param_.layout.value() == mshadow::kNCW ||
param_.layout.value() == mshadow::kNCHW ||
param_.layout.value() == mshadow::kNCDHW)
<< "Only support NCW, NCHW and NCDHW layout";
}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(req[conv::kOut], kWriteTo);
size_t expected = param_.no_bias ? 2 : 3;
CHECK_EQ(in_data.size(), expected);
CHECK_EQ(out_data.size(), 1U);
CHECK_EQ(req[conv::kOut], kWriteTo);
LayerSetUp(in_data[conv::kData].shape_, out_data[conv::kOut].shape_);
Stream<xpu>* s = ctx.get_stream<xpu>();
// allocate workspace for col_buffer
Tensor<xpu, 1, DType> workspace = ctx.requested[conv::kTempSpace]
.get_space_typed<xpu, 1, DType>(Shape1(col_buffer_size_), s);
// calculate the shape of col_buffer
TShape col_buffer_shape(num_spatial_axes_ + 1);
col_buffer_shape[0] = conv_in_channels_ * param_.kernel.Size();
for (index_t i = 1; i < col_buffer_shape.ndim(); ++i) {
col_buffer_shape[i] = out_data[0].shape_[i+1];
}
// create a column buffer using workspace and col_buffer_shape
TBlob col_buffer(workspace.dptr_, col_buffer_shape, xpu::kDevMask, DataType<DType>::kFlag);
// initialize weight and col_buffer 3D tensors for using gemm
index_t M = conv_out_channels_ / group_;
index_t N = conv_out_spatial_dim_;
index_t K = kernel_dim_;
Tensor<xpu, 3, DType> weight_3d = in_data[conv::kWeight].get_with_shape<xpu, 3, DType>(
Shape3(group_, M, K), s);
Tensor<xpu, 3, DType> col_buffer_3d = col_buffer.get_with_shape<xpu, 3, DType>(
Shape3(group_, K, N), s);
Tensor<xpu, 4, DType> output_4d = out_data[conv::kOut].get_with_shape<xpu, 4, DType>(
Shape4(num_, group_, M, N), s);
for (index_t n = 0; n < num_; ++n) {
// transform image to col_buffer in order to use gemm
im2col(s, in_data[conv::kData].dptr<DType>()+n*input_dim_, in_data[conv::kData].shape_,
col_buffer.shape_, param_.kernel, param_.pad, param_.stride, param_.dilate,
col_buffer.dptr<DType>());
Tensor<xpu, 3, DType> output_3d = output_4d[n];
for (index_t g = 0; g < group_; ++g) {
ASSIGN_DISPATCH(output_3d[g], req[conv::kOut], dot(weight_3d[g], col_buffer_3d[g]));
}
}
if (bias_term_) {
Tensor<xpu, 1, DType> bias = in_data[conv::kBias].get<xpu, 1, DType>(s);
Tensor<xpu, 3, DType> output_3d = out_data[conv::kOut].get_with_shape<xpu, 3, DType>(
Shape3(num_, conv_out_channels_, conv_out_spatial_dim_), s);
// has bias term, broadcast it to the same shape of output_3d in channel dim
output_3d += mshadow::expr::broadcast<1>(bias, output_3d.shape_);
}
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob>& out_grad,
const std::vector<TBlob>& in_data,
const std::vector<TBlob>& out_data,
const std::vector<OpReqType>& req,
const std::vector<TBlob>& in_grad,
const std::vector<TBlob>& aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(out_grad.size(), 1U);
size_t expected = param_.no_bias == 0 ? 3 : 2;
CHECK(in_data.size() == expected && in_grad.size() == expected);
CHECK_EQ(req.size(), expected);
CHECK_EQ(in_data[conv::kWeight].CheckContiguous(), true);
LayerSetUp(in_grad[conv::kData].shape_, out_grad[conv::kOut].shape_);
Stream<xpu> *s = ctx.get_stream<xpu>();
// allocate workspace for col_buffer
Tensor<xpu, 1, DType> workspace = ctx.requested[conv::kTempSpace]
.get_space_typed<xpu, 1, DType>(Shape1(col_buffer_size_), s);
// calculate the shape of col_buffer
TShape col_buffer_shape(num_spatial_axes_ + 1);
col_buffer_shape[0] = conv_in_channels_ * param_.kernel.Size();
for (index_t i = 1; i < col_buffer_shape.ndim(); ++i) {
col_buffer_shape[i] = out_grad[conv::kData].shape_[i+1];
}
// create a column buffer using workspace and col_buffer_shape
TBlob col_buffer(workspace.dptr_, col_buffer_shape, xpu::kDevMask, DataType<DType>::kFlag);
// initialize weight and col_buffer 3D tensors for using gemm
// For computing dLoss/d(in_data[kData])
index_t M = kernel_dim_;
index_t N = conv_out_spatial_dim_;
index_t K = conv_out_channels_ / group_;
Tensor<xpu, 3, DType> weight_3d = in_data[conv::kWeight].get_with_shape<xpu, 3, DType>(
Shape3(group_, K, M), s);
Tensor<xpu, 4, DType> out_grad_4d = out_grad[conv::kOut].get_with_shape<xpu, 4, DType>(
Shape4(num_, group_, K, N), s);
Tensor<xpu, 3, DType> col_buffer_3d = col_buffer.get_with_shape<xpu, 3, DType>(
Shape3(group_, M, N), s);
// For computing dLoss/dWeight
Tensor<xpu, 3, DType> dweight_3d = in_grad[conv::kWeight].get_with_shape<xpu, 3, DType>(
Shape3(group_, K, M), s);
for (index_t n = 0; n < num_; ++n) {
Tensor<xpu, 3, DType> out_grad_3d = out_grad_4d[n];
// gradient w.r.t. input data
for (index_t g = 0; g < group_; ++g) {
col_buffer_3d[g] = dot(weight_3d[g].T(), out_grad_3d[g]);
}
col2im(s, col_buffer.dptr<DType>(), in_grad[conv::kData].shape_, col_buffer.shape_,
param_.kernel, param_.pad, param_.stride, param_.dilate,
in_grad[conv::kData].dptr<DType>()+n*input_dim_, req[conv::kData]);
// gradient w.r.t. weight, dWeight should accumulate across the batch and group
im2col(s, in_data[conv::kData].dptr<DType>()+n*input_dim_, in_data[conv::kData].shape_,
col_buffer.shape_, param_.kernel, param_.pad, param_.stride, param_.dilate,
col_buffer.dptr<DType>());
for (index_t g = 0; g < group_; ++g) {
if (0 == n) {
ASSIGN_DISPATCH(dweight_3d[g], req[conv::kWeight],
dot(out_grad_3d[g], col_buffer_3d[g].T()));
} else {
dweight_3d[g] += dot(out_grad_3d[g], col_buffer_3d[g].T());
}
}
}
// gradient w.r.t bias
if (bias_term_) {
Tensor<xpu, 1, DType> dbias = in_grad[conv::kBias].get<xpu, 1, DType>(s);
Tensor<xpu, 3, DType> dout = out_grad[conv::kOut].get_with_shape<xpu, 3, DType>(
Shape3(num_, conv_out_channels_, conv_out_spatial_dim_), s);
ASSIGN_DISPATCH(dbias, req[conv::kBias], sumall_except_dim<1>(dout));
}
}
private:
void LayerSetUp(const TShape& ishape, const TShape& oshape) {
channel_axis_ = 1; // hard code channel axis
const index_t first_spatial_axis = channel_axis_ + 1;
const index_t num_axes = param_.kernel.ndim() + 2;
num_spatial_axes_ = num_axes - first_spatial_axis;
is_1x1_ = true;
for (index_t i = 0; i < param_.kernel.ndim(); ++i) {
is_1x1_ &= param_.kernel[i] == 1 && param_.stride[i] == 1 && param_.pad[i] == 0;
if (!is_1x1_) break;
}
// batch size
num_ = ishape[0];
// number of input channels
channels_ = ishape[1];
group_ = param_.num_group;
conv_out_channels_ = param_.num_filter;
conv_in_channels_ = channels_;
bias_term_ = !param_.no_bias;
kernel_dim_ = conv_in_channels_ / group_ * param_.kernel.Size();
weight_offset_ = conv_out_channels_ * kernel_dim_ / group_;
conv_out_spatial_dim_ = oshape.ProdShape(2, oshape.ndim());
col_offset_ = kernel_dim_ * conv_out_spatial_dim_;
output_offset_ = conv_out_channels_ * conv_out_spatial_dim_ / group_;
// size of the column buffer used for storing im2col-ed pixels
col_buffer_size_ = kernel_dim_ * group_ * conv_out_spatial_dim_;
// input/output image size (#channels * height * width)
input_dim_ = ishape.ProdShape(1, ishape.ndim());
output_dim_ = oshape.ProdShape(1, oshape.ndim());
num_kernels_im2col_ = conv_in_channels_ * conv_out_spatial_dim_;
num_kernels_col2im_ = input_dim_;
}
private:
ConvolutionParam param_;
index_t channel_axis_; // channel axis of the input
index_t channels_; // number of channels of input image
index_t num_spatial_axes_; // number of spatial axes
index_t num_; // batch size
index_t group_; // number of groups
index_t conv_out_channels_; // number of output channels (num_filter)
index_t conv_out_spatial_dim_; // number of pixels of output images per channel
index_t conv_in_channels_; // number of input channels
index_t kernel_dim_; // number of input channels per group * kernel size
index_t weight_offset_; // number of output channels per group * kernel_dim_
index_t col_offset_;
index_t output_offset_;
index_t col_buffer_size_;
index_t input_dim_;
index_t output_dim_;
index_t num_kernels_im2col_;
index_t num_kernels_col2im_;
bool bias_term_; // has bias term?
bool is_1x1_;
}; // class ConvolutionOp
template<typename xpu>
Operator* CreateOp(ConvolutionParam param, int dtype,
std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
Context ctx);
#if DMLC_USE_CXX11
class ConvolutionProp : public OperatorProperty {
public:
std::vector<std::string> ListArguments() const override {
if (!param_.no_bias) {
return {"data", "weight", "bias"};
} else {
return {"data", "weight"};
}
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
using namespace mshadow;
param_.Init(kwargs);
if (param_.kernel.ndim() == 1) {
param_.layout = param_.layout? param_.layout.value() : mshadow::kNCW;
if (param_.stride.ndim() == 0) param_.stride = Shape1(1);
if (param_.dilate.ndim() == 0) param_.dilate = Shape1(1);
if (param_.pad.ndim() == 0) param_.pad = Shape1(0);
} else if (param_.kernel.ndim() == 2) {
param_.layout = param_.layout ? param_.layout.value() : mshadow::kNCHW;
if (param_.stride.ndim() == 0) param_.stride = Shape2(1, 1);
if (param_.dilate.ndim() == 0) param_.dilate = Shape2(1, 1);
if (param_.pad.ndim() == 0) param_.pad = Shape2(0, 0);
} else {
CHECK_EQ(param_.kernel.ndim(), 3U) << param_.kernel.ndim() << "D convolution not supported";
param_.layout = param_.layout ? param_.layout.value(): mshadow::kNCDHW;
if (param_.stride.ndim() == 0) param_.stride = Shape3(1, 1, 1);
if (param_.dilate.ndim() == 0) param_.dilate = Shape3(1, 1, 1);
if (param_.pad.ndim() == 0) param_.pad = Shape3(0, 0, 0);
}
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
std::vector<TShape> *aux_shape) const override {
using namespace mshadow;
if (!param_.no_bias) {
CHECK_EQ(in_shape->size(), 3U) << "Input:[data, weight, bias]";
} else {
CHECK_EQ(in_shape->size(), 2U) << "Input:[data, weight]";
}
// CHECK_EQ(out_shape->size(), 1) << "Output: [output]";
out_shape->resize(1, TShape());
const TShape &dshp = (*in_shape)[conv::kData];
if (dshp.ndim() == 0) return false;
if (param_.kernel.ndim() == 1) {
// 1d conv
CHECK_EQ(dshp.ndim(), 3U) << "Input data should be 3D in batch-num_filter-x";
Shape<3> dshape = ConvertLayout(dshp.get<3>(), param_.layout.value(), kNCW);
Shape<3> wshape = Shape3(param_.num_filter / param_.num_group, dshape[1] / param_.num_group,
param_.kernel[0]);
wshape = ConvertLayout(wshape, kNCW, param_.layout.value());
wshape[0] *= param_.num_group;
SHAPE_ASSIGN_CHECK(*in_shape, conv::kWeight, wshape);
if (!param_.no_bias) {
SHAPE_ASSIGN_CHECK(*in_shape, conv::kBias, Shape1(param_.num_filter));
}
const index_t dilated_ksize_x = param_.DilatedKernelSize(0);
CHECK_EQ(dshape[1] % param_.num_group, 0U) \
<< "input num_filter must divide group size";
CHECK_EQ(param_.num_filter % param_.num_group, 0U) \
<< "output num_filter must divide group size";
CHECK_GT(param_.kernel.Size(), 0U) \
<< "incorrect kernel size: " << param_.kernel;
CHECK_GT(param_.stride.Size(), 0U) \
<< "incorrect stride size: " << param_.stride;
CHECK_GT(param_.dilate.Size(), 0U) \
<< "incorrect dilate size: " << param_.dilate;
Shape<3> oshape;
oshape[0] = dshape[0];
oshape[1] = param_.num_filter;
oshape[2] = dshape[2] ?
(AddPad(dshape[2], param_.pad[0]) - dilated_ksize_x) / param_.stride[0] + 1 : 0;
SHAPE_ASSIGN_CHECK(*out_shape, 0, ConvertLayout(oshape, kNCW, param_.layout.value()));
// Perform incomplete shape inference. Fill in the missing values in data shape.
// 1) We can always fill in the batch_size.
// 2) We can back-calculate the input height/width if the corresponding stride is 1.
oshape = ConvertLayout((*out_shape)[0].get<3>(), param_.layout.value(), kNCW);
dshape[0] = oshape[0];
if (oshape[2] && param_.stride[0] == 1) {
dshape[2] = oshape[2] + dilated_ksize_x - 1 - 2 * param_.pad[0];
}
SHAPE_ASSIGN_CHECK(*in_shape, conv::kData,
ConvertLayout(dshape, kNCW, param_.layout.value()));
// Check whether the kernel sizes are valid
if (dshape[2] != 0) {
CHECK_LE(dilated_ksize_x, AddPad(dshape[2], param_.pad[0])) << "kernel size exceed input";
}
return true;
} else if (param_.kernel.ndim() == 2) {
// 2d conv
CHECK_EQ(dshp.ndim(), 4U) \
<< "Input data should be 4D in batch-num_filter-y-x";
Shape<4> dshape = ConvertLayout(dshp.get<4>(), param_.layout.value(), kNCHW);
Shape<4> wshape = Shape4(param_.num_filter / param_.num_group,
dshape[1] / param_.num_group,
param_.kernel[0], param_.kernel[1]);
wshape = ConvertLayout(wshape, kNCHW, param_.layout.value());
wshape[0] *= param_.num_group;
SHAPE_ASSIGN_CHECK(*in_shape, conv::kWeight, wshape);
if (!param_.no_bias) {
SHAPE_ASSIGN_CHECK(*in_shape, conv::kBias, Shape1(param_.num_filter));
}
const index_t dilated_ksize_y = param_.DilatedKernelSize(0);
const index_t dilated_ksize_x = param_.DilatedKernelSize(1);
CHECK_EQ(dshape[1] % param_.num_group, 0U) \
<< "input num_filter must divide group size";
CHECK_EQ(param_.num_filter % param_.num_group, 0U) \
<< "output num_filter must divide group size";
CHECK_GT(param_.kernel.Size(), 0U) \
<< "incorrect kernel size: " << param_.kernel;
CHECK_GT(param_.stride.Size(), 0U) \
<< "incorrect stride size: " << param_.stride;
CHECK_GT(param_.dilate.Size(), 0U) \
<< "incorrect dilate size: " << param_.dilate;
Shape<4> oshape;
oshape[0] = dshape[0];
oshape[1] = param_.num_filter;
oshape[2] = dshape[2] ?
(AddPad(dshape[2], param_.pad[0]) - dilated_ksize_y) / param_.stride[0] + 1 : 0;
oshape[3] = dshape[3] ?
(AddPad(dshape[3], param_.pad[1]) - dilated_ksize_x) / param_.stride[1] + 1 : 0;
SHAPE_ASSIGN_CHECK(*out_shape, 0, ConvertLayout(oshape, kNCHW, param_.layout.value()));
// Perform incomplete shape inference. Fill in the missing values in data shape.
// 1) We can always fill in the batch_size.
// 2) We can back-calculate the input height/width if the corresponding stride is 1.
oshape = ConvertLayout((*out_shape)[0].get<4>(), param_.layout.value(), kNCHW);
dshape[0] = oshape[0];
if (oshape[2] && param_.stride[0] == 1) {
dshape[2] = oshape[2] + dilated_ksize_y - 1 - 2 * param_.pad[0];
}
if (oshape[3] && param_.stride[1] == 1) {
dshape[3] = oshape[3] + dilated_ksize_x - 1 - 2 * param_.pad[1];
}
SHAPE_ASSIGN_CHECK(*in_shape, conv::kData,
ConvertLayout(dshape, kNCHW, param_.layout.value()));
// Check whether the kernel sizes are valid
if (dshape[2] != 0) {
CHECK_LE(dilated_ksize_y, AddPad(dshape[2], param_.pad[0])) << "kernel size exceed input";
}
if (dshape[3] != 0) {
CHECK_LE(dilated_ksize_x, AddPad(dshape[3], param_.pad[1])) << "kernel size exceed input";
}
return true;
} else if (param_.kernel.ndim() == 3) {
// 3d conv
CHECK_EQ(dshp.ndim(), 5U) \
<< "Input data should be 5D in batch-num_filter-depth-y-x";
Shape<5> dshape = ConvertLayout(dshp.get<5>(), param_.layout.value(), kNCDHW);
Shape<5> wshape = Shape5(param_.num_filter / param_.num_group, dshape[1] / param_.num_group,
param_.kernel[0], param_.kernel[1], param_.kernel[2]);
wshape = ConvertLayout(wshape, kNCDHW, param_.layout.value());
wshape[0] *= param_.num_group;
SHAPE_ASSIGN_CHECK(*in_shape, conv::kWeight, wshape);
if (!param_.no_bias) {
SHAPE_ASSIGN_CHECK(*in_shape, conv::kBias, Shape1(param_.num_filter));
}
// Note: 3D dilation currently not supported.
// Calculations below done to preserve symmetry with 1D/2D code.
const index_t dilated_ksize_d = param_.DilatedKernelSize(0);
const index_t dilated_ksize_y = param_.DilatedKernelSize(1);
const index_t dilated_ksize_x = param_.DilatedKernelSize(2);
CHECK_EQ(dshape[1] % param_.num_group, 0U)
<< "input num_filter must divide group size";
CHECK_EQ(param_.num_filter % param_.num_group, 0U)
<< "output num_filter must divide group size";
CHECK_GT(param_.kernel.Size(), 0U) \
<< "incorrect kernel size: " << param_.kernel;
CHECK_GT(param_.stride.Size(), 0U) \
<< "incorrect stride size: " << param_.stride;
CHECK_GT(param_.dilate.Size(), 0U) \
<< "incorrect dilate size: " << param_.dilate;
CHECK_EQ(param_.dilate.Size(), 1U)
<< "Dilate is not supported in 3d convolution";
Shape<5> oshape;
oshape[0] = dshape[0];
oshape[1] = param_.num_filter;
oshape[2] = dshape[2] ?
(AddPad(dshape[2], param_.pad[0]) - dilated_ksize_d) / param_.stride[0] + 1 : 0;
oshape[3] = dshape[3] ?
(AddPad(dshape[3], param_.pad[1]) - dilated_ksize_y) / param_.stride[1] + 1 : 0;
oshape[4] = dshape[4] ?
(AddPad(dshape[4], param_.pad[2]) - dilated_ksize_x) / param_.stride[2] + 1 : 0;
SHAPE_ASSIGN_CHECK(*out_shape, 0, ConvertLayout(oshape, kNCDHW, param_.layout.value()));
// Perform incomplete shape inference. Fill in the missing values in data shape.
// 1) We can always fill in the batch_size.
// 2) We can back-calculate the input depth/height/width if the corresponding stride is 1.
oshape = ConvertLayout((*out_shape)[0].get<5>(), param_.layout.value(), kNCDHW);
dshape[0] = oshape[0];
if (oshape[2] && param_.stride[0] == 1) {
dshape[2] = oshape[2] + dilated_ksize_d - 1 - 2 * param_.pad[0];
}
if (oshape[3] && param_.stride[1] == 1) {
dshape[3] = oshape[3] + dilated_ksize_y - 1 - 2 * param_.pad[1];
}
if (oshape[4] && param_.stride[2] == 1) {
dshape[4] = oshape[4] + dilated_ksize_x - 1 - 2 * param_.pad[2];
}
SHAPE_ASSIGN_CHECK(*in_shape, conv::kData,
ConvertLayout(dshape, kNCDHW, param_.layout.value()));
// Check whether the kernel sizes are valid
if (dshape[2] != 0) {
CHECK_LE(dilated_ksize_d, AddPad(dshape[2], param_.pad[0])) << "kernel size exceed input";
}
if (dshape[3] != 0) {
CHECK_LE(dilated_ksize_y, AddPad(dshape[3], param_.pad[1])) << "kernel size exceed input";
}
if (dshape[4] != 0) {
CHECK_LE(dilated_ksize_x, AddPad(dshape[4], param_.pad[2])) << "kernel size exceed input";
}
return true;
} else {
LOG(FATAL) << "Unknown convolution type";
return false;
}
}
bool InferType(std::vector<int> *in_type,
std::vector<int> *out_type,
std::vector<int> *aux_type) const override {
CHECK_GE(in_type->size(), 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (index_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
} else {
CHECK_EQ((*in_type)[i], dtype) << "This layer requires uniform type. "
<< "Expected " << dtype << " v.s. given "
<< (*in_type)[i] << " at " << ListArguments()[i];
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new ConvolutionProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "Convolution";
}
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
return {out_grad[conv::kOut], in_data[conv::kData], in_data[conv::kWeight]};
}
std::vector<ResourceRequest> ForwardResource(
const std::vector<TShape> &in_shape) const override {
return {ResourceRequest::kTempSpace};
}
std::vector<ResourceRequest> BackwardResource(
const std::vector<TShape> &in_shape) const override {
return {ResourceRequest::kTempSpace};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return NULL;
}
Operator* CreateOperatorEx(Context ctx, std::vector<TShape> *in_shape,
std::vector<int> *in_type) const override;
private:
// Adds symmetric padding to a data input (in one dimension)
index_t AddPad(index_t dsize, index_t pad) const {
return dsize + 2 * pad;
}
ConvolutionParam param_;
}; // class ConvolutionProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_CONVOLUTION_INL_H_