blob: 26ed07ce9c70f2e3354975ea3b08a41e01437bc2 [file] [log] [blame]
/*!
* Copyright (c) 2015 by Contributors
* \file activation-inl.h
* \brief Activation operator
* \author Bing Xu
*/
#ifndef MXNET_OPERATOR_ACTIVATION_INL_H_
#define MXNET_OPERATOR_ACTIVATION_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <cstring>
#include <map>
#include <string>
#include <vector>
#include <utility>
#include "./operator_common.h"
namespace mxnet {
namespace op {
// Declare enumeration of input order to make code more intuitive.
// // These enums are only visible within this header
namespace activation {
enum ActivationOpInputs {kData};
enum ActivationOpOutputs {kOut};
enum ActivationOpType {kReLU, kSigmoid, kTanh, kSoftReLU};
} // activation
struct ActivationParam : public dmlc::Parameter<ActivationParam> {
// use int for enumeration
int act_type;
DMLC_DECLARE_PARAMETER(ActivationParam) {
DMLC_DECLARE_FIELD(act_type)
.add_enum("relu", activation::kReLU)
.add_enum("sigmoid", activation::kSigmoid)
.add_enum("tanh", activation::kTanh)
.add_enum("softrelu", activation::kSoftReLU)
.describe("Activation function to be applied.");
}
};
/**
* \brief This is the implementation of activation operator.
* \tparam xpu The device that the op will be executed on.
*/
template<typename xpu, typename ForwardOp, typename BackwardOp, typename DType>
class ActivationOp : public Operator {
public:
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(in_data.size(), 1U);
CHECK_EQ(out_data.size(), 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 2, DType> data = in_data[activation::kData].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> out = out_data[activation::kOut].FlatTo2D<xpu, DType>(s);
Assign(out, req[activation::kOut], F<ForwardOp>(data));
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
using namespace mshadow::expr;
CHECK_EQ(out_grad.size(), 1U);
CHECK(in_data.size() == 1 && in_grad.size() == 1);
CHECK_EQ(req.size(), 1U);
Stream<xpu> *s = ctx.get_stream<xpu>();
Tensor<xpu, 2, DType> m_out_grad = out_grad[activation::kOut].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> m_out_data = out_data[activation::kOut].FlatTo2D<xpu, DType>(s);
Tensor<xpu, 2, DType> m_in_grad = in_grad[activation::kData].FlatTo2D<xpu, DType>(s);
Assign(m_in_grad, req[activation::kData], F<BackwardOp>(m_out_data) * m_out_grad);
}
}; // class ActivationOp
// Decalre Factory function, used for dispatch specialization
template<typename xpu>
Operator* CreateOp(ActivationParam type, int dtype);
#if DMLC_USE_CXX11
class ActivationProp : public OperatorProperty {
public:
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
std::vector<TShape> *aux_shape) const override {
using namespace mshadow;
CHECK_EQ(in_shape->size(), 1U) << "Input:[data]";
const TShape &dshape = in_shape->at(activation::kData);
if (dshape.ndim() == 0) return false;
out_shape->clear();
out_shape->push_back(dshape);
return true;
}
bool InferType(std::vector<int> *in_type,
std::vector<int> *out_type,
std::vector<int> *aux_type) const override {
CHECK_GE(in_type->size(), 1U);
int dtype = (*in_type)[0];
CHECK_NE(dtype, -1) << "First input must have specified type";
for (index_t i = 0; i < in_type->size(); ++i) {
if ((*in_type)[i] == -1) {
(*in_type)[i] = dtype;
} else {
CHECK_EQ((*in_type)[i], dtype) << "This layer requires uniform type. "
<< "Expected " << dtype << " v.s. given "
<< (*in_type)[i] << " at " << ListArguments()[i];
}
}
out_type->clear();
out_type->push_back(dtype);
return true;
}
OperatorProperty* Copy() const override {
auto ptr = new ActivationProp();
ptr->param_ = param_;
return ptr;
}
std::string TypeString() const override {
return "Activation";
}
// decalre dependency and inplace optimization options
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
#if MXNET_USE_CUDNN == 1
return {out_grad[activation::kOut], out_data[activation::kOut], in_data[activation::kData]};
#else
return {out_grad[activation::kOut], out_data[activation::kOut]};
#endif // MXNET_USE_CUDNN
}
std::vector<std::pair<int, void*> > BackwardInplaceOption(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data,
const std::vector<void*> &in_grad) const override {
return {{out_grad[activation::kOut], in_grad[activation::kData]}};
}
std::vector<std::pair<int, void*> > ForwardInplaceOption(
const std::vector<int> &in_data,
const std::vector<void*> &out_data) const override {
return {{in_data[activation::kData], out_data[activation::kOut]}};
}
Operator* CreateOperator(Context ctx) const override {
LOG(FATAL) << "Not Implemented.";
return NULL;
}
Operator* CreateOperatorEx(Context ctx, std::vector<TShape> *in_shape,
std::vector<int> *in_type) const override;
private:
ActivationParam param_;
};
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_ACTIVATION_INL_H_