blob: 82bcde4013361532971a15dc23470ee5659413fd [file] [log] [blame]
import mxnet as mx
import logging
import os
import time
def _get_lr_scheduler(args, kv):
if 'lr_factor' not in args or args.lr_factor >= 1:
return (args.lr, None)
epoch_size = args.num_examples / args.batch_size
if 'dist' in args.kv_store:
epoch_size /= kv.num_workers
begin_epoch = args.load_epoch if args.load_epoch else 0
step_epochs = [int(l) for l in args.lr_step_epochs.split(',')]
lr = args.lr
for s in step_epochs:
if begin_epoch >= s:
lr *= args.lr_factor
if lr != args.lr:
logging.info('Adjust learning rate to %e for epoch %d' %(lr, begin_epoch))
steps = [epoch_size * (x-begin_epoch) for x in step_epochs if x-begin_epoch > 0]
return (lr, mx.lr_scheduler.MultiFactorScheduler(step=steps, factor=args.lr_factor))
def _load_model(args, rank=0):
if 'load_epoch' not in args or args.load_epoch is None:
return (None, None, None)
assert args.model_prefix is not None
model_prefix = args.model_prefix
if rank > 0 and os.path.exists("%s-%d-symbol.json" % (model_prefix, rank)):
model_prefix += "-%d" % (rank)
sym, arg_params, aux_params = mx.model.load_checkpoint(
model_prefix, args.load_epoch)
logging.info('Loaded model %s_%04d.params', model_prefix, args.load_epoch)
return (sym, arg_params, aux_params)
def _save_model(args, rank=0):
if args.model_prefix is None:
return None
dst_dir = os.path.dirname(args.model_prefix)
if not os.path.isdir(dst_dir):
os.mkdir(dst_dir)
return mx.callback.do_checkpoint(args.model_prefix if rank == 0 else "%s-%d" % (
args.model_prefix, rank))
def add_fit_args(parser):
"""
parser : argparse.ArgumentParser
return a parser added with args required by fit
"""
train = parser.add_argument_group('Training', 'model training')
train.add_argument('--network', type=str,
help='the neural network to use')
train.add_argument('--num-layers', type=int,
help='number of layers in the neural network, required by some networks such as resnet')
train.add_argument('--gpus', type=str,
help='list of gpus to run, e.g. 0 or 0,2,5. empty means using cpu')
train.add_argument('--kv-store', type=str, default='device',
help='key-value store type')
train.add_argument('--num-epochs', type=int, default=100,
help='max num of epochs')
train.add_argument('--lr', type=float, default=0.1,
help='initial learning rate')
train.add_argument('--lr-factor', type=float, default=0.1,
help='the ratio to reduce lr on each step')
train.add_argument('--lr-step-epochs', type=str,
help='the epochs to reduce the lr, e.g. 30,60')
train.add_argument('--optimizer', type=str, default='sgd',
help='the optimizer type')
train.add_argument('--mom', type=float, default=0.9,
help='momentum for sgd')
train.add_argument('--wd', type=float, default=0.0001,
help='weight decay for sgd')
train.add_argument('--batch-size', type=int, default=128,
help='the batch size')
train.add_argument('--disp-batches', type=int, default=20,
help='show progress for every n batches')
train.add_argument('--model-prefix', type=str,
help='model prefix')
parser.add_argument('--monitor', dest='monitor', type=int, default=0,
help='log network parameters every N iters if larger than 0')
train.add_argument('--load-epoch', type=int,
help='load the model on an epoch using the model-load-prefix')
train.add_argument('--top-k', type=int, default=0,
help='report the top-k accuracy. 0 means no report.')
train.add_argument('--test-io', type=int, default=0,
help='1 means test reading speed without training')
return train
def fit(args, network, data_loader, **kwargs):
"""
train a model
args : argparse returns
network : the symbol definition of the nerual network
data_loader : function that returns the train and val data iterators
"""
# kvstore
kv = mx.kvstore.create(args.kv_store)
# logging
head = '%(asctime)-15s Node[' + str(kv.rank) + '] %(message)s'
logging.basicConfig(level=logging.DEBUG, format=head)
logging.info('start with arguments %s', args)
# data iterators
(train, val) = data_loader(args, kv)
if args.test_io:
tic = time.time()
for i, batch in enumerate(train):
for j in batch.data:
j.wait_to_read()
if (i+1) % args.disp_batches == 0:
logging.info('Batch [%d]\tSpeed: %.2f samples/sec' % (
i, args.disp_batches*args.batch_size/(time.time()-tic)))
tic = time.time()
return
# load model
if 'arg_params' in kwargs and 'aux_params' in kwargs:
arg_params = kwargs['arg_params']
aux_params = kwargs['aux_params']
else:
sym, arg_params, aux_params = _load_model(args, kv.rank)
if sym is not None:
assert sym.tojson() == network.tojson()
# save model
checkpoint = _save_model(args, kv.rank)
# devices for training
devs = mx.cpu() if args.gpus is None or args.gpus is '' else [
mx.gpu(int(i)) for i in args.gpus.split(',')]
# learning rate
lr, lr_scheduler = _get_lr_scheduler(args, kv)
# create model
model = mx.mod.Module(
context = devs,
symbol = network
)
lr_scheduler = lr_scheduler
optimizer_params = {
'learning_rate': lr,
'momentum' : args.mom,
'wd' : args.wd,
'lr_scheduler': lr_scheduler,
'multi_precision': True}
monitor = mx.mon.Monitor(args.monitor, pattern=".*") if args.monitor > 0 else None
if args.network == 'alexnet':
# AlexNet will not converge using Xavier
initializer = mx.init.Normal()
else:
initializer = mx.init.Xavier(
rnd_type='gaussian', factor_type="in", magnitude=2)
# initializer = mx.init.Xavier(factor_type="in", magnitude=2.34),
# evaluation metrices
eval_metrics = ['accuracy']
if args.top_k > 0:
eval_metrics.append(mx.metric.create('top_k_accuracy', top_k=args.top_k))
# callbacks that run after each batch
batch_end_callbacks = [mx.callback.Speedometer(args.batch_size, args.disp_batches)]
if 'batch_end_callback' in kwargs:
cbs = kwargs['batch_end_callback']
batch_end_callbacks += cbs if isinstance(cbs, list) else [cbs]
# run
model.fit(train,
begin_epoch = args.load_epoch if args.load_epoch else 0,
num_epoch = args.num_epochs,
eval_data = val,
eval_metric = eval_metrics,
kvstore = kv,
optimizer = args.optimizer,
optimizer_params = optimizer_params,
initializer = initializer,
arg_params = arg_params,
aux_params = aux_params,
batch_end_callback = batch_end_callbacks,
epoch_end_callback = checkpoint,
allow_missing = True,
monitor = monitor)