| #!/usr/bin/perl |
| use strict; |
| use warnings; |
| use AI::MXNet qw(mx); |
| |
| ### model |
| my $data = mx->symbol->Variable('data'); |
| my $conv1= mx->symbol->Convolution(data => $data, name => 'conv1', num_filter => 32, kernel => [3,3], stride => [2,2]); |
| my $bn1 = mx->symbol->BatchNorm(data => $conv1, name => "bn1"); |
| my $act1 = mx->symbol->Activation(data => $bn1, name => 'relu1', act_type => "relu"); |
| my $mp1 = mx->symbol->Pooling(data => $act1, name => 'mp1', kernel => [2,2], stride =>[2,2], pool_type=>'max'); |
| |
| my $conv2= mx->symbol->Convolution(data => $mp1, name => 'conv2', num_filter => 32, kernel=>[3,3], stride=>[2,2]); |
| my $bn2 = mx->symbol->BatchNorm(data => $conv2, name=>"bn2"); |
| my $act2 = mx->symbol->Activation(data => $bn2, name=>'relu2', act_type=>"relu"); |
| my $mp2 = mx->symbol->Pooling(data => $act2, name => 'mp2', kernel=>[2,2], stride=>[2,2], pool_type=>'max'); |
| |
| |
| my $fl = mx->symbol->Flatten(data => $mp2, name=>"flatten"); |
| my $fc1 = mx->symbol->FullyConnected(data => $fl, name=>"fc1", num_hidden=>30); |
| my $act3 = mx->symbol->Activation(data => $fc1, name=>'relu3', act_type=>"relu"); |
| my $fc2 = mx->symbol->FullyConnected(data => $act3, name=>'fc2', num_hidden=>10); |
| my $softmax = mx->symbol->SoftmaxOutput(data => $fc2, name => 'softmax'); |
| |
| ## creates the image file in working directory, you need GraphViz installed for this to work |
| mx->viz->plot_network($softmax, save_format => 'png')->render("network.png"); |