blob: 6ac7f6b4e92d4d3cfa3e77bafbf6e18b3eca9776 [file] [log] [blame]
/*!
* Copyright (c) 2015 by Contributors
* \file native_op-inl.h
* \brief
* \author Junyuan Xie
*/
#ifndef MXNET_OPERATOR_NATIVE_OP_INL_H_
#define MXNET_OPERATOR_NATIVE_OP_INL_H_
#include <dmlc/logging.h>
#include <dmlc/parameter.h>
#include <mxnet/operator.h>
#include <mxnet/c_api.h>
#include <map>
#include <vector>
#include <string>
#include <utility>
#include <sstream>
#include "./operator_common.h"
namespace mxnet {
namespace op {
struct NativeOpParam : public dmlc::Parameter<NativeOpParam> {
void *info;
bool need_top_grad;
NativeOpInfo *pinfo;
int num_inputs_, num_outputs_;
DMLC_DECLARE_PARAMETER(NativeOpParam) {
DMLC_DECLARE_FIELD(info);
DMLC_DECLARE_FIELD(need_top_grad).set_default(true)
.describe("Whether this layer needs out grad for backward. "
"Should be false for loss layers.");
}
};
template<typename xpu>
class NativeOp : public Operator {
public:
explicit NativeOp(NativeOpParam p) {
this->param_ = p;
}
virtual void Forward(const OpContext &ctx,
const std::vector<TBlob> &in_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &out_data,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
Stream<xpu> *s = ctx.get_stream<xpu>();
ptrs.clear();
ndims.clear();
shapes.clear();
tags.clear();
SyncVec(in_data, "in_data", s, 0);
SyncVec(out_data, "out_data", s, 1);
s->Wait();
param_.pinfo->forward(ptrs.size(), ptrs.data(), ndims.data(), shapes.data(),
tags.data(), param_.pinfo->p_forward);
for (index_t i = 0; i < out_data.size(); ++i) {
CHECK_NE(req[i], kAddTo) << "NativeOp doesn't support AddTo for output";
if (req[i] != kNullOp) {
std::stringstream ss;
ss << std::string("out_data") << i;
Copy(out_data[i].FlatTo2D<xpu, real_t>(s),
buffer_map[ss.str()].second, s);
}
}
s->Wait();
}
virtual void Backward(const OpContext &ctx,
const std::vector<TBlob> &out_grad,
const std::vector<TBlob> &in_data,
const std::vector<TBlob> &out_data,
const std::vector<OpReqType> &req,
const std::vector<TBlob> &in_grad,
const std::vector<TBlob> &aux_args) {
using namespace mshadow;
Stream<xpu> *s = ctx.get_stream<xpu>();
ptrs.clear();
ndims.clear();
shapes.clear();
tags.clear();
SyncVec(in_data, "in_data", s, 0);
SyncVec(out_data, "out_data", s, 1);
SyncVec(in_grad, "in_grad", s, 2);
if (param_.need_top_grad) {
SyncVec(out_grad, "out_grad", s, 3);
}
s->Wait();
param_.pinfo->backward(ptrs.size(), ptrs.data(), ndims.data(), shapes.data(),
tags.data(), param_.pinfo->p_backward);
for (index_t i = 0; i < in_grad.size(); ++i) {
CHECK_NE(req[i], kAddTo) << "NativeOp doesn't support AddTo for output";
if (req[i] != kNullOp) {
std::stringstream ss;
ss << std::string("in_grad") << i;
Copy(in_grad[i].FlatTo2D<xpu, real_t>(s),
buffer_map[ss.str()].second, s);
}
}
s->Wait();
}
private:
NativeOpParam param_;
std::vector<real_t*> ptrs;
std::vector<int> ndims;
std::vector<unsigned*> shapes;
std::vector<int> tags;
std::map<std::string, std::pair<TShape, mshadow::Tensor<cpu, 2> > > buffer_map;
virtual void SyncBuffer(const TBlob &tblob,
const std::string &name,
mshadow::Stream<xpu> *stream) {
using namespace mshadow;
std::map<std::string, std::pair<TShape, mshadow::Tensor<cpu, 2> > >::iterator buffer =
buffer_map.find(name);
if (buffer == buffer_map.end() || buffer->second.first != tblob.shape_) {
if (buffer != buffer_map.end()) {
FreeSpace<2, real_t>(&(buffer->second.second));
buffer_map.erase(buffer);
}
buffer_map[name] =
std::pair<TShape, Tensor<cpu, 2> >(tblob.shape_,
NewTensor<cpu>(tblob.shape_.FlatTo2D(),
0.0f,
false));
buffer = buffer_map.find(name);
}
Copy(buffer->second.second, tblob.FlatTo2D<xpu, real_t>(stream), stream);
}
virtual void SyncVec(const std::vector<TBlob> &vec,
const std::string &prefix,
mshadow::Stream<xpu> *stream,
int tag) {
for (size_t i = 0; i < vec.size(); ++i) {
std::stringstream name;
name << prefix << i;
SyncBuffer(vec[i], name.str(), stream);
ptrs.push_back(buffer_map[name.str()].second.dptr_);
ndims.push_back(vec[i].ndim());
shapes.push_back(const_cast<index_t*>(vec[i].shape_.data()));
tags.push_back(tag);
}
}
}; // NativeOp
template<typename xpu>
Operator* CreateOp(NativeOpParam param);
#if DMLC_USE_CXX11
class NativeOpProp : public OperatorProperty {
public:
std::vector<std::string> ListArguments() const override {
char ** args = NULL;
param_.pinfo->list_arguments(&args, param_.pinfo->p_list_arguments);
std::vector<std::string> ret;
for (int i = 0; args[i] != NULL; ++i) {
ret.push_back(args[i]);
}
return ret;
}
std::vector<std::string> ListOutputs() const override {
char ** args = NULL;
param_.pinfo->list_outputs(&args, param_.pinfo->p_list_outputs);
std::vector<std::string> ret;
for (int i = 0; args[i] != NULL; ++i) {
ret.push_back(args[i]);
}
return ret;
}
int NumOutputs() const override {
return param_.num_outputs_;
}
void Init(const std::vector<std::pair<std::string, std::string> >& kwargs) override {
param_.Init(kwargs);
for (auto iter = kwargs.begin(); iter != kwargs.end(); ++iter) {
if (iter->first == "info") {
sscanf(iter->second.c_str(), "%p", &param_.pinfo);
}
}
param_.num_inputs_ = ListArguments().size();
param_.num_outputs_ = ListOutputs().size();
}
std::map<std::string, std::string> GetParams() const override {
return param_.__DICT__();
}
bool InferShape(std::vector<TShape> *in_shape,
std::vector<TShape> *out_shape,
std::vector<TShape> *aux_shape) const override {
std::vector<unsigned*> shapes;
std::vector<int> ndims;
for (auto iter = in_shape->begin(); iter != in_shape->end(); ++iter) {
shapes.push_back(iter->data());
ndims.push_back(iter->ndim());
}
shapes.resize(param_.num_inputs_+param_.num_outputs_);
ndims.resize(param_.num_inputs_+param_.num_outputs_);
param_.pinfo->infer_shape(shapes.size(), ndims.data(), shapes.data(),
param_.pinfo->p_infer_shape);
for (unsigned i = 0; i < in_shape->size(); ++i) {
SHAPE_ASSIGN_CHECK(*in_shape, i, TShape(shapes[i], shapes[i]+ndims[i]));
}
out_shape->clear();
for (unsigned i = param_.num_inputs_; i < shapes.size(); ++i) {
out_shape->push_back(TShape(shapes[i], shapes[i]+ndims[i]));
}
return true;
}
OperatorProperty* Copy() const override {
NativeOpProp *prop_sym = new NativeOpProp();
prop_sym->param_ = this->param_;
return prop_sym;
}
std::string TypeString() const override {
return "_Native";
}
std::vector<int> DeclareBackwardDependency(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data) const override {
std::vector<int> deps;
if (param_.need_top_grad) {
deps.insert(deps.end(), out_grad.begin(), out_grad.end());
}
deps.insert(deps.end(), in_data.begin(), in_data.end());
deps.insert(deps.end(), out_data.begin(), out_data.end());
return deps;
}
std::vector<std::pair<int, void*> > BackwardInplaceOption(
const std::vector<int> &out_grad,
const std::vector<int> &in_data,
const std::vector<int> &out_data,
const std::vector<void*> &in_grad) const override {
return {};
}
Operator* CreateOperator(Context ctx) const override;
private:
NativeOpParam param_;
}; // class PythonProp
#endif // DMLC_USE_CXX11
} // namespace op
} // namespace mxnet
#endif // MXNET_OPERATOR_NATIVE_OP_INL_H_