blob: 379e904b9690a8124563b06ec8ce89fcc0a0e8d1 [file] [log] [blame]
# coding: utf-8
# In[1]:
import sys
sys.path.insert(0, "../mxnet/python")
# In[2]:
import mxnet as mx
import numpy as np
def Conv(data, num_filter, kernel=(5, 5), pad=(2, 2), stride=(2, 2)):
sym = mx.sym.Convolution(data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=False)
sym = mx.sym.BatchNorm(sym, fix_gamma=False)
sym = mx.sym.LeakyReLU(sym, act_type="leaky")
return sym
def Deconv(data, num_filter, kernel=(6, 6), pad=(2, 2), stride=(2, 2), out=False):
sym = mx.sym.Deconvolution(data, num_filter=num_filter, kernel=kernel, stride=stride, pad=pad, no_bias=True)
sym = mx.sym.BatchNorm(sym, fix_gamma=False)
if out == False:
sym = mx.sym.LeakyReLU(sym, act_type="leaky")
else:
sym = mx.sym.Activation(sym, act_type="tanh")
return sym
# In[70]:
def get_generator(prefix, im_hw):
data = mx.sym.Variable("%s_data" % prefix)
conv1_1 = mx.sym.Convolution(data, num_filter=48, kernel=(5, 5), pad=(2, 2), no_bias=False)
conv1_1 = mx.sym.BatchNorm(conv1_1, fix_gamma=False)
conv1_1 = mx.sym.LeakyReLU(conv1_1, act_type="leaky")
conv2_1 = mx.sym.Convolution(conv1_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=False)
conv2_1 = mx.sym.BatchNorm(conv2_1, fix_gamma=False)
conv2_1 = mx.sym.LeakyReLU(conv2_1, act_type="leaky")
conv3_1 = mx.sym.Convolution(conv2_1, num_filter=64, kernel=(3, 3), pad=(1, 1), no_bias=False)
conv3_1 = mx.sym.BatchNorm(conv3_1, fix_gamma=False)
conv3_1 = mx.sym.LeakyReLU(conv3_1, act_type="leaky")
conv4_1 = mx.sym.Convolution(conv3_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=False)
conv4_1 = mx.sym.BatchNorm(conv4_1, fix_gamma=False)
conv4_1 = mx.sym.LeakyReLU(conv4_1, act_type="leaky")
conv5_1 = mx.sym.Convolution(conv4_1, num_filter=48, kernel=(5, 5), pad=(2, 2), no_bias=False)
conv5_1 = mx.sym.BatchNorm(conv5_1, fix_gamma=False)
conv5_1 = mx.sym.LeakyReLU(conv5_1, act_type="leaky")
conv6_1 = mx.sym.Convolution(conv5_1, num_filter=32, kernel=(5, 5), pad=(2, 2), no_bias=True)
conv6_1 = mx.sym.BatchNorm(conv6_1, fix_gamma=False)
conv6_1 = mx.sym.LeakyReLU(conv6_1, act_type="leaky")
out = mx.sym.Convolution(conv6_1, num_filter=3, kernel=(3, 3), pad=(1, 1), no_bias=True)
out = mx.sym.BatchNorm(out, fix_gamma=False)
out = mx.sym.Activation(data=out, act_type="tanh")
raw_out = (out * 128) + 128
norm = mx.sym.SliceChannel(raw_out, num_outputs=3)
r_ch = norm[0] - 123.68
g_ch = norm[1] - 116.779
b_ch = norm[2] - 103.939
norm_out = 0.4 * mx.sym.Concat(*[r_ch, g_ch, b_ch]) + 0.6 * data
return norm_out
def get_module(prefix, dshape, ctx, is_train=True):
sym = get_generator(prefix, dshape[-2:])
mod = mx.mod.Module(symbol=sym,
data_names=("%s_data" % prefix,),
label_names=None,
context=ctx)
if is_train:
mod.bind(data_shapes=[("%s_data" % prefix, dshape)], for_training=True, inputs_need_grad=True)
else:
mod.bind(data_shapes=[("%s_data" % prefix, dshape)], for_training=False, inputs_need_grad=False)
mod.init_params(initializer=mx.init.Xavier(magnitude=2.))
return mod