| /*! |
| * Copyright (c) 2015 by Contributors |
| * \file convolution.cc |
| * \brief |
| * \author Bing Xu |
| */ |
| |
| #include "./convolution-inl.h" |
| #if MXNET_USE_MKL2017 == 1 |
| #include <mkl_memory.h> |
| #include "./mkl/mkl_memory-inl.h" |
| #include "./mkl/mkl_convolution-inl.h" |
| #endif // MXNET_USE_MKL2017 |
| #if MXNET_USE_NNPACK == 1 |
| #include "./nnpack/nnpack_convolution-inl.h" |
| #endif // MXNET_USE_NNPACK |
| |
| namespace mxnet { |
| namespace op { |
| DMLC_REGISTER_PARAMETER(ConvolutionParam); |
| |
| template<> |
| Operator* CreateOp<cpu>(ConvolutionParam param, int dtype, |
| std::vector<TShape> *in_shape, |
| std::vector<TShape> *out_shape, |
| Context ctx) { |
| Operator *op = NULL; |
| #if MXNET_USE_MKL2017 == 1 |
| if ((param.dilate[0] == 1 && param.dilate[1] == 1) |
| && param.kernel.ndim() == 2) { |
| switch (dtype) { |
| case mshadow::kFloat32: |
| return new MKLConvolutionOp<cpu, float>(param); |
| case mshadow::kFloat64: |
| return new MKLConvolutionOp<cpu, double>(param); |
| default: |
| break; |
| } |
| } |
| LOG(INFO) << MKLConvolutionOp<cpu, float>::getName() << " Skip MKL optimization"; |
| #endif |
| #if MXNET_USE_NNPACK == 1 |
| const size_t batch_size = (*in_shape)[0][0]; |
| if ((param.dilate[0] == 1 && param.dilate[1] == 1) |
| && param.kernel.ndim() == 2 && (!param.no_bias) |
| && param.num_group == 1 && (batch_size == 1 || |
| ((batch_size > 1) && (param.stride[0] == 1) && |
| (param.stride[1] == 1)))) { |
| switch (dtype) { |
| case mshadow::kFloat32: |
| return new NNPACKConvolutionOp<cpu, float>(param); |
| default: |
| break; |
| } |
| } |
| #endif |
| MSHADOW_REAL_TYPE_SWITCH(dtype, DType, { |
| op = new ConvolutionOp<cpu, DType>(param); |
| }) |
| return op; |
| } |
| |
| // DO_BIND_DISPATCH comes from operator_common.h |
| Operator *ConvolutionProp::CreateOperatorEx(Context ctx, |
| std::vector<TShape> *in_shape, |
| std::vector<int> *in_type) const { |
| std::vector<TShape> out_shape, aux_shape; |
| std::vector<int> out_type, aux_type; |
| CHECK(InferType(in_type, &out_type, &aux_type)); |
| CHECK(InferShape(in_shape, &out_shape, &aux_shape)); |
| DO_BIND_DISPATCH(CreateOp, param_, (*in_type)[0], in_shape, &out_shape, ctx); |
| } |
| |
| MXNET_REGISTER_OP_PROPERTY(Convolution, ConvolutionProp) |
| .add_argument("data", "Symbol", "Input data to the ConvolutionOp.") |
| .add_argument("weight", "Symbol", "Weight matrix.") |
| .add_argument("bias", "Symbol", "Bias parameter.") |
| .add_arguments(ConvolutionParam::__FIELDS__()) |
| .describe("Apply convolution to input then add a bias."); |
| |
| } // namespace op |
| } // namespace mxnet |